具有可分离协方差结构的高维噪声下奇异值的数据驱动优化收缩及其应用

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Pei-Chun Su , Hau-Tieng Wu
{"title":"具有可分离协方差结构的高维噪声下奇异值的数据驱动优化收缩及其应用","authors":"Pei-Chun Su ,&nbsp;Hau-Tieng Wu","doi":"10.1016/j.acha.2024.101698","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a data-driven optimal shrinkage algorithm, named <em>extended OptShrink</em> (eOptShrink), for matrix denoising with high-dimensional noise and a separable covariance structure. This noise is colored and dependent across samples. The algorithm leverages the asymptotic behavior of singular values and vectors of the noisy data's random matrix. Our theory includes the sticking property of non-outlier singular values, delocalization of weak signal singular vectors, and the spectral behavior of outlier singular values and vectors. We introduce three estimators: a novel rank estimator, an estimator for the spectral distribution of the pure noise matrix, and the optimal shrinker eOptShrink. Notably, eOptShrink does not require estimating the noise's separable covariance structure. We provide a theoretical guarantee for these estimators with a convergence rate. Through numerical simulations and comparisons with state-of-the-art optimal shrinkage algorithms, we demonstrate eOptShrink's application in extracting maternal and fetal electrocardiograms from single-channel trans-abdominal maternal electrocardiograms.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101698"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven optimal shrinkage of singular values under high-dimensional noise with separable covariance structure with application\",\"authors\":\"Pei-Chun Su ,&nbsp;Hau-Tieng Wu\",\"doi\":\"10.1016/j.acha.2024.101698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a data-driven optimal shrinkage algorithm, named <em>extended OptShrink</em> (eOptShrink), for matrix denoising with high-dimensional noise and a separable covariance structure. This noise is colored and dependent across samples. The algorithm leverages the asymptotic behavior of singular values and vectors of the noisy data's random matrix. Our theory includes the sticking property of non-outlier singular values, delocalization of weak signal singular vectors, and the spectral behavior of outlier singular values and vectors. We introduce three estimators: a novel rank estimator, an estimator for the spectral distribution of the pure noise matrix, and the optimal shrinker eOptShrink. Notably, eOptShrink does not require estimating the noise's separable covariance structure. We provide a theoretical guarantee for these estimators with a convergence rate. Through numerical simulations and comparisons with state-of-the-art optimal shrinkage algorithms, we demonstrate eOptShrink's application in extracting maternal and fetal electrocardiograms from single-channel trans-abdominal maternal electrocardiograms.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"74 \",\"pages\":\"Article 101698\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000757\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000757","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们针对具有高维噪声和可分离协方差结构的矩阵去噪,开发了一种数据驱动的最优收缩算法,并将其命名为扩展 OptShrink(eOptShrink)。这种噪声是有颜色的,并依赖于不同的样本。该算法利用了噪声数据随机矩阵奇异值和向量的渐近行为。我们的理论包括非离群奇异值的粘性特性、弱信号奇异向量的脱域以及离群奇异值和向量的频谱行为。我们引入了三种估计器:新颖的秩估计器、纯噪声矩阵频谱分布估计器和最优收缩器 eOptShrink。值得注意的是,eOptShrink 无需估计噪声的可分离协方差结构。我们从理论上保证了这些估计器的收敛速度。通过数值模拟以及与最先进的最优收缩算法的比较,我们展示了 eOptShrink 在从单通道经腹母体心电图中提取母体和胎儿心电图中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven optimal shrinkage of singular values under high-dimensional noise with separable covariance structure with application

We develop a data-driven optimal shrinkage algorithm, named extended OptShrink (eOptShrink), for matrix denoising with high-dimensional noise and a separable covariance structure. This noise is colored and dependent across samples. The algorithm leverages the asymptotic behavior of singular values and vectors of the noisy data's random matrix. Our theory includes the sticking property of non-outlier singular values, delocalization of weak signal singular vectors, and the spectral behavior of outlier singular values and vectors. We introduce three estimators: a novel rank estimator, an estimator for the spectral distribution of the pure noise matrix, and the optimal shrinker eOptShrink. Notably, eOptShrink does not require estimating the noise's separable covariance structure. We provide a theoretical guarantee for these estimators with a convergence rate. Through numerical simulations and comparisons with state-of-the-art optimal shrinkage algorithms, we demonstrate eOptShrink's application in extracting maternal and fetal electrocardiograms from single-channel trans-abdominal maternal electrocardiograms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信