基于 BN-ELM 的煤矿风险预测:包括人为因素在内的瓦斯风险预警

IF 10.2 2区 经济学 0 ENVIRONMENTAL STUDIES
Kai Yu , Lujie Zhou , Weiqiang Jin , Yu Chen
{"title":"基于 BN-ELM 的煤矿风险预测:包括人为因素在内的瓦斯风险预警","authors":"Kai Yu ,&nbsp;Lujie Zhou ,&nbsp;Weiqiang Jin ,&nbsp;Yu Chen","doi":"10.1016/j.resourpol.2024.105295","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing the challenge of integrating quantitative risk data with qualitative behavioral risk information in coal mine safety production, this study, taking gas risk as an example, proposes a BN-ELM (Bayesian Network-Extreme Learning Machine) prediction and early warning method that incorporates behavioral information. By uniformly quantifying behavioral risks and gas data, optimizing model parameters, and integrating control chart technology, this method constructs a coal mine safety situation awareness model. Experimental results demonstrate that this approach significantly reduces prediction errors in gas data (by 0.007), risk values (by 0.01), and safety situation values (by 0.03). This study innovatively considers behavioral risk factors, providing coal mine enterprises with efficient risk management methods and practical tools.</p></div>","PeriodicalId":20970,"journal":{"name":"Resources Policy","volume":"98 ","pages":"Article 105295"},"PeriodicalIF":10.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of coal mine risk based on BN-ELM: Gas risk early warning including human factors\",\"authors\":\"Kai Yu ,&nbsp;Lujie Zhou ,&nbsp;Weiqiang Jin ,&nbsp;Yu Chen\",\"doi\":\"10.1016/j.resourpol.2024.105295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Addressing the challenge of integrating quantitative risk data with qualitative behavioral risk information in coal mine safety production, this study, taking gas risk as an example, proposes a BN-ELM (Bayesian Network-Extreme Learning Machine) prediction and early warning method that incorporates behavioral information. By uniformly quantifying behavioral risks and gas data, optimizing model parameters, and integrating control chart technology, this method constructs a coal mine safety situation awareness model. Experimental results demonstrate that this approach significantly reduces prediction errors in gas data (by 0.007), risk values (by 0.01), and safety situation values (by 0.03). This study innovatively considers behavioral risk factors, providing coal mine enterprises with efficient risk management methods and practical tools.</p></div>\",\"PeriodicalId\":20970,\"journal\":{\"name\":\"Resources Policy\",\"volume\":\"98 \",\"pages\":\"Article 105295\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Policy\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301420724006627\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301420724006627","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

针对煤矿安全生产中定量风险数据与定性行为风险信息相结合的难题,本研究以瓦斯风险为例,提出了一种结合行为信息的 BN-ELM(贝叶斯网络-极端学习机)预测预警方法。该方法通过统一量化行为风险和瓦斯数据,优化模型参数,并结合控制图技术,构建了煤矿安全态势感知模型。实验结果表明,该方法显著降低了瓦斯数据预测误差(0.007)、风险值预测误差(0.01)和安全状况值预测误差(0.03)。该研究创新性地考虑了行为风险因素,为煤矿企业提供了高效的风险管理方法和实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of coal mine risk based on BN-ELM: Gas risk early warning including human factors

Addressing the challenge of integrating quantitative risk data with qualitative behavioral risk information in coal mine safety production, this study, taking gas risk as an example, proposes a BN-ELM (Bayesian Network-Extreme Learning Machine) prediction and early warning method that incorporates behavioral information. By uniformly quantifying behavioral risks and gas data, optimizing model parameters, and integrating control chart technology, this method constructs a coal mine safety situation awareness model. Experimental results demonstrate that this approach significantly reduces prediction errors in gas data (by 0.007), risk values (by 0.01), and safety situation values (by 0.03). This study innovatively considers behavioral risk factors, providing coal mine enterprises with efficient risk management methods and practical tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Policy
Resources Policy ENVIRONMENTAL STUDIES-
CiteScore
13.40
自引率
23.50%
发文量
602
审稿时长
69 days
期刊介绍: Resources Policy is an international journal focused on the economics and policy aspects of mineral and fossil fuel extraction, production, and utilization. It targets individuals in academia, government, and industry. The journal seeks original research submissions analyzing public policy, economics, social science, geography, and finance in the fields of mining, non-fuel minerals, energy minerals, fossil fuels, and metals. Mineral economics topics covered include mineral market analysis, price analysis, project evaluation, mining and sustainable development, mineral resource rents, resource curse, mineral wealth and corruption, mineral taxation and regulation, strategic minerals and their supply, and the impact of mineral development on local communities and indigenous populations. The journal specifically excludes papers with agriculture, forestry, or fisheries as their primary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信