{"title":"鼓励与责任:提示工程如何影响 ChatGPT-4 的放射学考试成绩","authors":"Daniel Nguyen , Allison MacKenzie , Young H. Kim","doi":"10.1016/j.clinimag.2024.110276","DOIUrl":null,"url":null,"abstract":"<div><p>Large Language Models (LLM) like ChatGPT-4 hold significant promise in medical application, especially in the field of radiology. While previous studies have shown the promise of ChatGTP-4 in textual-based scenarios, its performance on image-based response remains suboptimal. This study investigates the impact of prompt engineering on ChatGPT-4's accuracy on the 2022 American College of Radiology In Training Test Questions for Diagnostic Radiology Residents that include textual and visual-based questions. Four personas were created, each with unique prompts, and evaluated using ChatGPT-4. Results indicate that encouraging prompts and those disclaiming responsibility led to higher overall accuracy (number of questions answered correctly) compared to other personas. Personas that threaten the LLM with legal action or mounting clinical responsibility were not only found to score less, but also refrain of answering questions at a higher rate. These findings highlight the importance of prompt context in optimizing LLM responses and the need for further research to integrate AI responsibly into medical practice.</p></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":"115 ","pages":"Article 110276"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encouragement vs. liability: How prompt engineering influences ChatGPT-4's radiology exam performance\",\"authors\":\"Daniel Nguyen , Allison MacKenzie , Young H. Kim\",\"doi\":\"10.1016/j.clinimag.2024.110276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large Language Models (LLM) like ChatGPT-4 hold significant promise in medical application, especially in the field of radiology. While previous studies have shown the promise of ChatGTP-4 in textual-based scenarios, its performance on image-based response remains suboptimal. This study investigates the impact of prompt engineering on ChatGPT-4's accuracy on the 2022 American College of Radiology In Training Test Questions for Diagnostic Radiology Residents that include textual and visual-based questions. Four personas were created, each with unique prompts, and evaluated using ChatGPT-4. Results indicate that encouraging prompts and those disclaiming responsibility led to higher overall accuracy (number of questions answered correctly) compared to other personas. Personas that threaten the LLM with legal action or mounting clinical responsibility were not only found to score less, but also refrain of answering questions at a higher rate. These findings highlight the importance of prompt context in optimizing LLM responses and the need for further research to integrate AI responsibly into medical practice.</p></div>\",\"PeriodicalId\":50680,\"journal\":{\"name\":\"Clinical Imaging\",\"volume\":\"115 \",\"pages\":\"Article 110276\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0899707124002067\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707124002067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Encouragement vs. liability: How prompt engineering influences ChatGPT-4's radiology exam performance
Large Language Models (LLM) like ChatGPT-4 hold significant promise in medical application, especially in the field of radiology. While previous studies have shown the promise of ChatGTP-4 in textual-based scenarios, its performance on image-based response remains suboptimal. This study investigates the impact of prompt engineering on ChatGPT-4's accuracy on the 2022 American College of Radiology In Training Test Questions for Diagnostic Radiology Residents that include textual and visual-based questions. Four personas were created, each with unique prompts, and evaluated using ChatGPT-4. Results indicate that encouraging prompts and those disclaiming responsibility led to higher overall accuracy (number of questions answered correctly) compared to other personas. Personas that threaten the LLM with legal action or mounting clinical responsibility were not only found to score less, but also refrain of answering questions at a higher rate. These findings highlight the importance of prompt context in optimizing LLM responses and the need for further research to integrate AI responsibly into medical practice.
期刊介绍:
The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include:
-Body Imaging-
Breast Imaging-
Cardiothoracic Imaging-
Imaging Physics and Informatics-
Molecular Imaging and Nuclear Medicine-
Musculoskeletal and Emergency Imaging-
Neuroradiology-
Practice, Policy & Education-
Pediatric Imaging-
Vascular and Interventional Radiology