{"title":"经稻壳灰处理的自密实混凝土在不同养护温度下的性能","authors":"","doi":"10.1016/j.jobe.2024.110652","DOIUrl":null,"url":null,"abstract":"<div><p>Self-compacting concrete (SCC) is currently gaining traction as a replacement to conventional vibrated concrete. Its distinct microstructure leads to varied mechanical behaviour under different curing temperatures. In the past various supplementary cementitious materials (SCMs) were used in SCC to investigate their respective effects on the performance. However, there has been no systematic studies conducted to determine the effect of different curing temperature on the sensitivity reaction of rice husk ash (RHA) in SCC. This research focuses on high-strength SCC with SCMs such as RHA, silica fume (SF), fly ash (FA), and ground granulated blast-furnace slag (GGBS), exploring their applicability for concrete structures under varying curing temperatures. Heat of hydration, compressive strength and open porosity of SCC specimens were assessed at various temperature. Results indicate high curing temperatures expedite the hydration and pozzolanic reaction, refining the microstructure and increasing the early-age concrete strength, but compromising the long-term performance, potentially mitigated by the use of SCMs. Conversely, lower curing temperature, impedes hydration leading to gradual strength gain, particularly with SCMs, yet yielding significant strength increases at later concrete age. SCMs presence and curing temperature significantly influence maturity function-based strength predictions, impacting strength trends in the samples studied.</p></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352710224022204/pdfft?md5=932c7c78154be2781047367e7867bf09&pid=1-s2.0-S2352710224022204-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance of self-compacting concrete with treated rice husk ash at different curing temperatures\",\"authors\":\"\",\"doi\":\"10.1016/j.jobe.2024.110652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-compacting concrete (SCC) is currently gaining traction as a replacement to conventional vibrated concrete. Its distinct microstructure leads to varied mechanical behaviour under different curing temperatures. In the past various supplementary cementitious materials (SCMs) were used in SCC to investigate their respective effects on the performance. However, there has been no systematic studies conducted to determine the effect of different curing temperature on the sensitivity reaction of rice husk ash (RHA) in SCC. This research focuses on high-strength SCC with SCMs such as RHA, silica fume (SF), fly ash (FA), and ground granulated blast-furnace slag (GGBS), exploring their applicability for concrete structures under varying curing temperatures. Heat of hydration, compressive strength and open porosity of SCC specimens were assessed at various temperature. Results indicate high curing temperatures expedite the hydration and pozzolanic reaction, refining the microstructure and increasing the early-age concrete strength, but compromising the long-term performance, potentially mitigated by the use of SCMs. Conversely, lower curing temperature, impedes hydration leading to gradual strength gain, particularly with SCMs, yet yielding significant strength increases at later concrete age. SCMs presence and curing temperature significantly influence maturity function-based strength predictions, impacting strength trends in the samples studied.</p></div>\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352710224022204/pdfft?md5=932c7c78154be2781047367e7867bf09&pid=1-s2.0-S2352710224022204-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352710224022204\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710224022204","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Performance of self-compacting concrete with treated rice husk ash at different curing temperatures
Self-compacting concrete (SCC) is currently gaining traction as a replacement to conventional vibrated concrete. Its distinct microstructure leads to varied mechanical behaviour under different curing temperatures. In the past various supplementary cementitious materials (SCMs) were used in SCC to investigate their respective effects on the performance. However, there has been no systematic studies conducted to determine the effect of different curing temperature on the sensitivity reaction of rice husk ash (RHA) in SCC. This research focuses on high-strength SCC with SCMs such as RHA, silica fume (SF), fly ash (FA), and ground granulated blast-furnace slag (GGBS), exploring their applicability for concrete structures under varying curing temperatures. Heat of hydration, compressive strength and open porosity of SCC specimens were assessed at various temperature. Results indicate high curing temperatures expedite the hydration and pozzolanic reaction, refining the microstructure and increasing the early-age concrete strength, but compromising the long-term performance, potentially mitigated by the use of SCMs. Conversely, lower curing temperature, impedes hydration leading to gradual strength gain, particularly with SCMs, yet yielding significant strength increases at later concrete age. SCMs presence and curing temperature significantly influence maturity function-based strength predictions, impacting strength trends in the samples studied.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.