{"title":"赫米矩阵参数的超几何函数的表示计算","authors":"Duong Thanh Phong","doi":"10.1016/j.cam.2024.116258","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the exact expressions for the hypergeometric function of a Hermitian matrix argument. This result allows for the eigenvalues of the matrix argument to occur with arbitrary multiplicities and can be used for numerical computation. These exact expressions are particularly important since they provide the key ingredient which allows many results which involve this function to be useful from a practical engineering perspective.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation computation for the hypergeometric function of a Hermitian matrix argument\",\"authors\":\"Duong Thanh Phong\",\"doi\":\"10.1016/j.cam.2024.116258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the exact expressions for the hypergeometric function of a Hermitian matrix argument. This result allows for the eigenvalues of the matrix argument to occur with arbitrary multiplicities and can be used for numerical computation. These exact expressions are particularly important since they provide the key ingredient which allows many results which involve this function to be useful from a practical engineering perspective.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Representation computation for the hypergeometric function of a Hermitian matrix argument
We establish the exact expressions for the hypergeometric function of a Hermitian matrix argument. This result allows for the eigenvalues of the matrix argument to occur with arbitrary multiplicities and can be used for numerical computation. These exact expressions are particularly important since they provide the key ingredient which allows many results which involve this function to be useful from a practical engineering perspective.