Klarissa Kober , Klaus Birkhofer , Michael Glemnitz
{"title":"土壤水分过高会促使小麦田土壤中出现地甲虫和蜘蛛","authors":"Klarissa Kober , Klaus Birkhofer , Michael Glemnitz","doi":"10.1016/j.baae.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Promoting arthropods in agricultural landscapes can contribute substantially to stop their decline and enhance pest control. Higher soil moisture and the presence of field margins can increase the abundance of arthropods in agricultural landscapes and influence their distribution within crop fields. However, little is known about the influence of soil moisture and distance from field margins on the overwintering of arthropods in arable fields. We investigated the influence of soil moisture and distance from a field margin on the numbers of arthropods, ground beetles and spiders emerging from soil in winter wheat fields. We established transects in winter wheat fields away from two different types of field margins: (i) around small standing water bodies (kettle holes) to capture a wide range of soil moisture values and (ii) other semi-natural landscape elements. At three distances (1 m, 20 m, 50 m), we sampled arthropods with emergence traps and measured soil moisture between March and June. We found that soil moisture had a positive effect on the emergence numbers of arthropods in general and ground beetles and spiders in particular. Distance from field margins generally had negative effects on the emergence numbers of ground beetles, but positive effects on the emergence numbers of spiders. Emergence numbers and soil moisture content did not differ significantly between the two types of field margins. The high emergence numbers inside the fields indicate that arable fields are important overwintering habitats for beneficial arthropods. Proper management of arable soils to promote soil water holding capacity and soil moisture content may have the added benefit of promoting the production of beneficial natural enemies from local soils.</p></div>","PeriodicalId":8708,"journal":{"name":"Basic and Applied Ecology","volume":"80 ","pages":"Pages 72-80"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1439179124000628/pdfft?md5=aaea408197bae2485127bcd5b02e983e&pid=1-s2.0-S1439179124000628-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High soil moisture promotes the emergence of ground beetles and spiders from soils in wheat fields\",\"authors\":\"Klarissa Kober , Klaus Birkhofer , Michael Glemnitz\",\"doi\":\"10.1016/j.baae.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Promoting arthropods in agricultural landscapes can contribute substantially to stop their decline and enhance pest control. Higher soil moisture and the presence of field margins can increase the abundance of arthropods in agricultural landscapes and influence their distribution within crop fields. However, little is known about the influence of soil moisture and distance from field margins on the overwintering of arthropods in arable fields. We investigated the influence of soil moisture and distance from a field margin on the numbers of arthropods, ground beetles and spiders emerging from soil in winter wheat fields. We established transects in winter wheat fields away from two different types of field margins: (i) around small standing water bodies (kettle holes) to capture a wide range of soil moisture values and (ii) other semi-natural landscape elements. At three distances (1 m, 20 m, 50 m), we sampled arthropods with emergence traps and measured soil moisture between March and June. We found that soil moisture had a positive effect on the emergence numbers of arthropods in general and ground beetles and spiders in particular. Distance from field margins generally had negative effects on the emergence numbers of ground beetles, but positive effects on the emergence numbers of spiders. Emergence numbers and soil moisture content did not differ significantly between the two types of field margins. The high emergence numbers inside the fields indicate that arable fields are important overwintering habitats for beneficial arthropods. Proper management of arable soils to promote soil water holding capacity and soil moisture content may have the added benefit of promoting the production of beneficial natural enemies from local soils.</p></div>\",\"PeriodicalId\":8708,\"journal\":{\"name\":\"Basic and Applied Ecology\",\"volume\":\"80 \",\"pages\":\"Pages 72-80\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1439179124000628/pdfft?md5=aaea408197bae2485127bcd5b02e983e&pid=1-s2.0-S1439179124000628-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Applied Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1439179124000628\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Applied Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1439179124000628","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
High soil moisture promotes the emergence of ground beetles and spiders from soils in wheat fields
Promoting arthropods in agricultural landscapes can contribute substantially to stop their decline and enhance pest control. Higher soil moisture and the presence of field margins can increase the abundance of arthropods in agricultural landscapes and influence their distribution within crop fields. However, little is known about the influence of soil moisture and distance from field margins on the overwintering of arthropods in arable fields. We investigated the influence of soil moisture and distance from a field margin on the numbers of arthropods, ground beetles and spiders emerging from soil in winter wheat fields. We established transects in winter wheat fields away from two different types of field margins: (i) around small standing water bodies (kettle holes) to capture a wide range of soil moisture values and (ii) other semi-natural landscape elements. At three distances (1 m, 20 m, 50 m), we sampled arthropods with emergence traps and measured soil moisture between March and June. We found that soil moisture had a positive effect on the emergence numbers of arthropods in general and ground beetles and spiders in particular. Distance from field margins generally had negative effects on the emergence numbers of ground beetles, but positive effects on the emergence numbers of spiders. Emergence numbers and soil moisture content did not differ significantly between the two types of field margins. The high emergence numbers inside the fields indicate that arable fields are important overwintering habitats for beneficial arthropods. Proper management of arable soils to promote soil water holding capacity and soil moisture content may have the added benefit of promoting the production of beneficial natural enemies from local soils.
期刊介绍:
Basic and Applied Ecology provides a forum in which significant advances and ideas can be rapidly communicated to a wide audience. Basic and Applied Ecology publishes original contributions, perspectives and reviews from all areas of basic and applied ecology. Ecologists from all countries are invited to publish ecological research of international interest in its pages. There is no bias with regard to taxon or geographical area.