在完全导电容器中使用非准备数据的可压缩磁流体动力学方程的不可压缩极限

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao Wang, Xin Xu
{"title":"在完全导电容器中使用非准备数据的可压缩磁流体动力学方程的不可压缩极限","authors":"Xiao Wang,&nbsp;Xin Xu","doi":"10.1016/j.nonrwa.2024.104207","DOIUrl":null,"url":null,"abstract":"<div><p>We study the low Mach number limit of the compressible magnetohydrodynamic equations in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> with ill-prepared initial data. The velocity field satisfies the Navier-slip boundary conditions and the magnetic field satisfies the perfectly conducting boundary conditions. By performing energy estimate in the conormal Sobolev space and proving the maximum principle to the equations satisfied by <span><math><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>,</mo><mo>∇</mo><mo>×</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow></math></span>, we overcome the difficulties caused by the simultaneous occurrence of fast oscillation and boundary layer. As a consequence, the uniform existence and the convergence of solutions are obtained.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incompressible limit of the compressible magnetohydrodynamic equations with ill-prepared data in a perfectly conducting container\",\"authors\":\"Xiao Wang,&nbsp;Xin Xu\",\"doi\":\"10.1016/j.nonrwa.2024.104207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the low Mach number limit of the compressible magnetohydrodynamic equations in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> with ill-prepared initial data. The velocity field satisfies the Navier-slip boundary conditions and the magnetic field satisfies the perfectly conducting boundary conditions. By performing energy estimate in the conormal Sobolev space and proving the maximum principle to the equations satisfied by <span><math><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>,</mo><mo>∇</mo><mo>×</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow></math></span>, we overcome the difficulties caused by the simultaneous occurrence of fast oscillation and boundary layer. As a consequence, the uniform existence and the convergence of solutions are obtained.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001469\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在初始数据准备不足的有界域 Ω⊂R3 中可压缩磁流体动力学方程的低马赫数极限。速度场满足纳维-滑动边界条件,磁场满足完全导电边界条件。通过在常模 Sobolev 空间中进行能量估计,并证明由 (∇×vϵ,∇×Bϵ) 满足的方程的最大值原理,我们克服了同时出现快速振荡和边界层所带来的困难。因此,得到了解的均匀存在性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incompressible limit of the compressible magnetohydrodynamic equations with ill-prepared data in a perfectly conducting container

We study the low Mach number limit of the compressible magnetohydrodynamic equations in a bounded domain ΩR3 with ill-prepared initial data. The velocity field satisfies the Navier-slip boundary conditions and the magnetic field satisfies the perfectly conducting boundary conditions. By performing energy estimate in the conormal Sobolev space and proving the maximum principle to the equations satisfied by (×vϵ,×Bϵ), we overcome the difficulties caused by the simultaneous occurrence of fast oscillation and boundary layer. As a consequence, the uniform existence and the convergence of solutions are obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信