{"title":"自主材料研究与设计:表征","authors":"Kevin Kaufmann , Kenneth S. Vecchio","doi":"10.1016/j.cossms.2024.101192","DOIUrl":null,"url":null,"abstract":"<div><p>New materials are a fundamental component of most major advancements in human history. The pivotal role materials play in the development of next generation technologies has spurred campaigns such as the Materials Genome Initiative (MGI) with the goal of reducing the time and cost to discover, characterize, and deploy advanced materials. As goals of the MGI have been met and new capabilities have emerged, a contemporary vision has taken shape within the scientific community whereby the exploration of materials space is dramatically accelerated by artificial intelligence agent(s) capable of performing research independently from humans and achieving a paradigm change in the field. As this idea comes to fruition and new materials are more rapidly computationally evaluated and synthesized nearly on demand, the rate at which a complete characterization of each candidate material’s properties can be completed and understood within the context of all other potential solutions will be the next bottleneck in a materials design campaign. This work provides an overview of the technical and conceptual components related to materials characterization discussed during a workshop dedicated to challenging the way materials research is thought of and performed within the emergent field of autonomous materials research and design (AMRAD). Furthermore, general considerations for developing autonomous characterization are presented along with related works and a discussion of their progress and shortcomings toward the AMRAD vision.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"32 ","pages":"Article 101192"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028624000585/pdfft?md5=befbb7ffbbdc18d5bcfda3a75928f4c2&pid=1-s2.0-S1359028624000585-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Autonomous materials research and design: Characterization\",\"authors\":\"Kevin Kaufmann , Kenneth S. Vecchio\",\"doi\":\"10.1016/j.cossms.2024.101192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New materials are a fundamental component of most major advancements in human history. The pivotal role materials play in the development of next generation technologies has spurred campaigns such as the Materials Genome Initiative (MGI) with the goal of reducing the time and cost to discover, characterize, and deploy advanced materials. As goals of the MGI have been met and new capabilities have emerged, a contemporary vision has taken shape within the scientific community whereby the exploration of materials space is dramatically accelerated by artificial intelligence agent(s) capable of performing research independently from humans and achieving a paradigm change in the field. As this idea comes to fruition and new materials are more rapidly computationally evaluated and synthesized nearly on demand, the rate at which a complete characterization of each candidate material’s properties can be completed and understood within the context of all other potential solutions will be the next bottleneck in a materials design campaign. This work provides an overview of the technical and conceptual components related to materials characterization discussed during a workshop dedicated to challenging the way materials research is thought of and performed within the emergent field of autonomous materials research and design (AMRAD). Furthermore, general considerations for developing autonomous characterization are presented along with related works and a discussion of their progress and shortcomings toward the AMRAD vision.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"32 \",\"pages\":\"Article 101192\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359028624000585/pdfft?md5=befbb7ffbbdc18d5bcfda3a75928f4c2&pid=1-s2.0-S1359028624000585-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028624000585\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000585","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Autonomous materials research and design: Characterization
New materials are a fundamental component of most major advancements in human history. The pivotal role materials play in the development of next generation technologies has spurred campaigns such as the Materials Genome Initiative (MGI) with the goal of reducing the time and cost to discover, characterize, and deploy advanced materials. As goals of the MGI have been met and new capabilities have emerged, a contemporary vision has taken shape within the scientific community whereby the exploration of materials space is dramatically accelerated by artificial intelligence agent(s) capable of performing research independently from humans and achieving a paradigm change in the field. As this idea comes to fruition and new materials are more rapidly computationally evaluated and synthesized nearly on demand, the rate at which a complete characterization of each candidate material’s properties can be completed and understood within the context of all other potential solutions will be the next bottleneck in a materials design campaign. This work provides an overview of the technical and conceptual components related to materials characterization discussed during a workshop dedicated to challenging the way materials research is thought of and performed within the emergent field of autonomous materials research and design (AMRAD). Furthermore, general considerations for developing autonomous characterization are presented along with related works and a discussion of their progress and shortcomings toward the AMRAD vision.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field