Juan Zhao , Yumei Wang , Qianyi Liu , Yuqing Wang , Chao-an Long
{"title":"含有生物控制酵母的普鲁兰涂层与氯化钠混合,用于控制柑橘采后病害腐烂","authors":"Juan Zhao , Yumei Wang , Qianyi Liu , Yuqing Wang , Chao-an Long","doi":"10.1016/j.pestbp.2024.106108","DOIUrl":null,"url":null,"abstract":"<div><p>The decline in postharvest citrus quality due to fungal infections necessitates innovative packaging solutions. This study presents a pullulan-based edible film (PBYFs) with biocontrol yeasts, designed to dissolve in both liquid and soil. This film is capable of enveloping entire citrus fruits, effectively managing postharvest diseases, and extending their shelf life. The formulation of PBYFs includes NaCl 0.1 M, <em>Kloeckera apiculata</em> 34–9 at 1.0 × 10<sup>7</sup> CFU mL<sup>−1</sup>, pullulan 3 % <em>w</em>/<em>v</em>, SA 0.5 % w/v, and glycerin 1 % w/v. Our experiments, conducted on eight citrus varieties, demonstrated that PBYFs significantly reduced the occurrence of green and blue molds, sour rot, and anthracnose <em>in vivo</em>. Moreover, PBYFs-coated fruits exhibited an extended shelf life without compromising the quality parameters such as weight loss, TSS (total soluble solids), TA (titratable acidity), VC (vitamin C), or the accumulation of off-flavor volatiles. This research presents a promising approach for creating scalable, cost-effective, and environmentally sustainable biodegradable antifungal packaging systems for citrus fruits.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"205 ","pages":"Article 106108"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullulan-based coatings carrying biocontrol yeast mixed with NaCl to control citrus postharvest disease decays\",\"authors\":\"Juan Zhao , Yumei Wang , Qianyi Liu , Yuqing Wang , Chao-an Long\",\"doi\":\"10.1016/j.pestbp.2024.106108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The decline in postharvest citrus quality due to fungal infections necessitates innovative packaging solutions. This study presents a pullulan-based edible film (PBYFs) with biocontrol yeasts, designed to dissolve in both liquid and soil. This film is capable of enveloping entire citrus fruits, effectively managing postharvest diseases, and extending their shelf life. The formulation of PBYFs includes NaCl 0.1 M, <em>Kloeckera apiculata</em> 34–9 at 1.0 × 10<sup>7</sup> CFU mL<sup>−1</sup>, pullulan 3 % <em>w</em>/<em>v</em>, SA 0.5 % w/v, and glycerin 1 % w/v. Our experiments, conducted on eight citrus varieties, demonstrated that PBYFs significantly reduced the occurrence of green and blue molds, sour rot, and anthracnose <em>in vivo</em>. Moreover, PBYFs-coated fruits exhibited an extended shelf life without compromising the quality parameters such as weight loss, TSS (total soluble solids), TA (titratable acidity), VC (vitamin C), or the accumulation of off-flavor volatiles. This research presents a promising approach for creating scalable, cost-effective, and environmentally sustainable biodegradable antifungal packaging systems for citrus fruits.</p></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":\"205 \",\"pages\":\"Article 106108\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524003419\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003419","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pullulan-based coatings carrying biocontrol yeast mixed with NaCl to control citrus postharvest disease decays
The decline in postharvest citrus quality due to fungal infections necessitates innovative packaging solutions. This study presents a pullulan-based edible film (PBYFs) with biocontrol yeasts, designed to dissolve in both liquid and soil. This film is capable of enveloping entire citrus fruits, effectively managing postharvest diseases, and extending their shelf life. The formulation of PBYFs includes NaCl 0.1 M, Kloeckera apiculata 34–9 at 1.0 × 107 CFU mL−1, pullulan 3 % w/v, SA 0.5 % w/v, and glycerin 1 % w/v. Our experiments, conducted on eight citrus varieties, demonstrated that PBYFs significantly reduced the occurrence of green and blue molds, sour rot, and anthracnose in vivo. Moreover, PBYFs-coated fruits exhibited an extended shelf life without compromising the quality parameters such as weight loss, TSS (total soluble solids), TA (titratable acidity), VC (vitamin C), or the accumulation of off-flavor volatiles. This research presents a promising approach for creating scalable, cost-effective, and environmentally sustainable biodegradable antifungal packaging systems for citrus fruits.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.