Harol Alexander Cetre-Orejuela , Marcela Jaramillo , Oscar D. Álvarez-Villa
{"title":"连续模型中多孔介质和断裂介质的导水性缩放:综述","authors":"Harol Alexander Cetre-Orejuela , Marcela Jaramillo , Oscar D. Álvarez-Villa","doi":"10.1016/j.advwatres.2024.104822","DOIUrl":null,"url":null,"abstract":"<div><p>Hydraulic conductivity exhibits a high spatial variability due to the heterogeneity and discontinuity of the geologic environments and their constituent materials. Representing such variability is problematic when implementing groundwater flow models, especially in geological media such as fractured rocks, fractured porous media, and karstic media, where the scale of observation is important when defining the heterogeneity of the media. In those cases, hydraulic tests performed locally in the fractures measure hydraulic conductivity at a fine scale. Nevertheless, groundwater flow models usually deal with problems involving a regional scale, with a grid cell size much greater than the cell in the fine scale. Modeling groundwater flow in fractured media using the Discrete Fracture Network (DFN) method at the regional scale is still challenging due to the difficulty of hydraulically characterizing the entire fracture network using the limited available data. Instead, methods such as Equivalent Porous Media (EPM) represent the fractured media as a continuous media, making it more practical to represent fractured rocks as a continuous equivalent media in regional models than the DFN method. However, in approaches such as EPM, choosing the block size adequately is critical because, at large scales, it can considerably affect the simulated flow patterns. Accordingly, upscaling hydraulic conductivities of fracture networks at the fine scale into equivalent parameters at the scale of the model's block is still a relevant question in practical groundwater modeling. This paper reviews the most widely used hydraulic conductivity scaling techniques to identify methods that consistently represent fractured media groundwater flow dynamics in regional models.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104822"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling of hydraulic conductivity in porous and fractured media for continuous models: A review\",\"authors\":\"Harol Alexander Cetre-Orejuela , Marcela Jaramillo , Oscar D. Álvarez-Villa\",\"doi\":\"10.1016/j.advwatres.2024.104822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydraulic conductivity exhibits a high spatial variability due to the heterogeneity and discontinuity of the geologic environments and their constituent materials. Representing such variability is problematic when implementing groundwater flow models, especially in geological media such as fractured rocks, fractured porous media, and karstic media, where the scale of observation is important when defining the heterogeneity of the media. In those cases, hydraulic tests performed locally in the fractures measure hydraulic conductivity at a fine scale. Nevertheless, groundwater flow models usually deal with problems involving a regional scale, with a grid cell size much greater than the cell in the fine scale. Modeling groundwater flow in fractured media using the Discrete Fracture Network (DFN) method at the regional scale is still challenging due to the difficulty of hydraulically characterizing the entire fracture network using the limited available data. Instead, methods such as Equivalent Porous Media (EPM) represent the fractured media as a continuous media, making it more practical to represent fractured rocks as a continuous equivalent media in regional models than the DFN method. However, in approaches such as EPM, choosing the block size adequately is critical because, at large scales, it can considerably affect the simulated flow patterns. Accordingly, upscaling hydraulic conductivities of fracture networks at the fine scale into equivalent parameters at the scale of the model's block is still a relevant question in practical groundwater modeling. This paper reviews the most widely used hydraulic conductivity scaling techniques to identify methods that consistently represent fractured media groundwater flow dynamics in regional models.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"193 \",\"pages\":\"Article 104822\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824002094\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002094","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Scaling of hydraulic conductivity in porous and fractured media for continuous models: A review
Hydraulic conductivity exhibits a high spatial variability due to the heterogeneity and discontinuity of the geologic environments and their constituent materials. Representing such variability is problematic when implementing groundwater flow models, especially in geological media such as fractured rocks, fractured porous media, and karstic media, where the scale of observation is important when defining the heterogeneity of the media. In those cases, hydraulic tests performed locally in the fractures measure hydraulic conductivity at a fine scale. Nevertheless, groundwater flow models usually deal with problems involving a regional scale, with a grid cell size much greater than the cell in the fine scale. Modeling groundwater flow in fractured media using the Discrete Fracture Network (DFN) method at the regional scale is still challenging due to the difficulty of hydraulically characterizing the entire fracture network using the limited available data. Instead, methods such as Equivalent Porous Media (EPM) represent the fractured media as a continuous media, making it more practical to represent fractured rocks as a continuous equivalent media in regional models than the DFN method. However, in approaches such as EPM, choosing the block size adequately is critical because, at large scales, it can considerably affect the simulated flow patterns. Accordingly, upscaling hydraulic conductivities of fracture networks at the fine scale into equivalent parameters at the scale of the model's block is still a relevant question in practical groundwater modeling. This paper reviews the most widely used hydraulic conductivity scaling techniques to identify methods that consistently represent fractured media groundwater flow dynamics in regional models.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes