Cheng-Wei Huang , Jean-Christophe Domec , Thomas L. O’Halloran , Samantha Hartzell
{"title":"地下水位与蕨类植物排水量之间的动态相互作用","authors":"Cheng-Wei Huang , Jean-Christophe Domec , Thomas L. O’Halloran , Samantha Hartzell","doi":"10.1016/j.advwatres.2024.104814","DOIUrl":null,"url":null,"abstract":"<div><p>Many traditional models that predict plant–groundwater use based on groundwater level variations, such as the White method, make various simplifying assumptions. For example, these models often neglect the role of plant hydraulic redistribution, a process that can contribute up to 80% of transpiration. Thus, this work aims to avoid such assumptions and subsequently explore the dynamic interactions between groundwater levels and phreatophytic vegetation, including plant nocturnal transpiration, hydraulic redistribution, and response to atmospheric conditions, in shallow-groundwater ecosystems using Loblolly pine (<em>Pinus taeda</em>) as a model species. The model scenarios are formulated using a stomatal-optimization model coupled to the soil–plant–atmosphere continuum. Flow through soil and groundwater are described using the Richards equation and a linear reservoir approximation, respectively, with groundwater in contact with an external water body of fixed elevation. Results show that nocturnal transpiration, mediated by plant residual conductance, and hydraulic redistribution, are able to reduce groundwater levels at night and alter the groundwater recharge rate. Projected atmospheric conditions of increased carbon dioxide and elevated temperature have opposing effects on groundwater levels, which tend to roughly cancel each other under a projected scenario of 500 ppm carbon dioxide and 1.5 <span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>C warming. Such detailed modeling can be used to provide further insights into coupled interactions between vegetation, climate and groundwater levels in phreatophyte-dominated ecosystems.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104814"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic interactions between groundwater level and discharge by phreatophytes\",\"authors\":\"Cheng-Wei Huang , Jean-Christophe Domec , Thomas L. O’Halloran , Samantha Hartzell\",\"doi\":\"10.1016/j.advwatres.2024.104814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many traditional models that predict plant–groundwater use based on groundwater level variations, such as the White method, make various simplifying assumptions. For example, these models often neglect the role of plant hydraulic redistribution, a process that can contribute up to 80% of transpiration. Thus, this work aims to avoid such assumptions and subsequently explore the dynamic interactions between groundwater levels and phreatophytic vegetation, including plant nocturnal transpiration, hydraulic redistribution, and response to atmospheric conditions, in shallow-groundwater ecosystems using Loblolly pine (<em>Pinus taeda</em>) as a model species. The model scenarios are formulated using a stomatal-optimization model coupled to the soil–plant–atmosphere continuum. Flow through soil and groundwater are described using the Richards equation and a linear reservoir approximation, respectively, with groundwater in contact with an external water body of fixed elevation. Results show that nocturnal transpiration, mediated by plant residual conductance, and hydraulic redistribution, are able to reduce groundwater levels at night and alter the groundwater recharge rate. Projected atmospheric conditions of increased carbon dioxide and elevated temperature have opposing effects on groundwater levels, which tend to roughly cancel each other under a projected scenario of 500 ppm carbon dioxide and 1.5 <span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>C warming. Such detailed modeling can be used to provide further insights into coupled interactions between vegetation, climate and groundwater levels in phreatophyte-dominated ecosystems.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"193 \",\"pages\":\"Article 104814\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030917082400201X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030917082400201X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Dynamic interactions between groundwater level and discharge by phreatophytes
Many traditional models that predict plant–groundwater use based on groundwater level variations, such as the White method, make various simplifying assumptions. For example, these models often neglect the role of plant hydraulic redistribution, a process that can contribute up to 80% of transpiration. Thus, this work aims to avoid such assumptions and subsequently explore the dynamic interactions between groundwater levels and phreatophytic vegetation, including plant nocturnal transpiration, hydraulic redistribution, and response to atmospheric conditions, in shallow-groundwater ecosystems using Loblolly pine (Pinus taeda) as a model species. The model scenarios are formulated using a stomatal-optimization model coupled to the soil–plant–atmosphere continuum. Flow through soil and groundwater are described using the Richards equation and a linear reservoir approximation, respectively, with groundwater in contact with an external water body of fixed elevation. Results show that nocturnal transpiration, mediated by plant residual conductance, and hydraulic redistribution, are able to reduce groundwater levels at night and alter the groundwater recharge rate. Projected atmospheric conditions of increased carbon dioxide and elevated temperature have opposing effects on groundwater levels, which tend to roughly cancel each other under a projected scenario of 500 ppm carbon dioxide and 1.5 C warming. Such detailed modeling can be used to provide further insights into coupled interactions between vegetation, climate and groundwater levels in phreatophyte-dominated ecosystems.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes