{"title":"转录组研究揭示了系统性红斑狼疮分子和细胞的复杂性:综述","authors":"","doi":"10.1016/j.clim.2024.110367","DOIUrl":null,"url":null,"abstract":"<div><p>Transcriptomic analysis plays a vital role in investigating Systemic Lupus Erythematosus (SLE), a complex autoimmune disease characterized by diverse clinical manifestations. This approach has yielded valuable insights into gene expression patterns and molecular regulatory mechanisms involved in SLE pathogenesis. Notably, interferon-stimulated gene (ISG) signatures are significantly upregulated in immune cells, skin, and kidney. Although a correlation with serological parameters and clinical symptoms has been proposed, the association with global disease activities remains controversial. Key findings in the field include an upregulated plasmablast signature, which positively correlates with disease activity; a neutrophil signature associated with lupus nephritis; and a decreased lymphocyte signature, reflecting lymphopenia. Tissue-level studies highlight the critical role of infiltrating immune cells in organ damage. Future research should leverage advanced technologies and integrate multi-omics data to deepen our understanding of SLE's molecular underpinnings, facilitating the development of targeted therapies.</p></div>","PeriodicalId":10392,"journal":{"name":"Clinical immunology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic studies unravel the molecular and cellular complexity of systemic lupus erythematosus: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.clim.2024.110367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcriptomic analysis plays a vital role in investigating Systemic Lupus Erythematosus (SLE), a complex autoimmune disease characterized by diverse clinical manifestations. This approach has yielded valuable insights into gene expression patterns and molecular regulatory mechanisms involved in SLE pathogenesis. Notably, interferon-stimulated gene (ISG) signatures are significantly upregulated in immune cells, skin, and kidney. Although a correlation with serological parameters and clinical symptoms has been proposed, the association with global disease activities remains controversial. Key findings in the field include an upregulated plasmablast signature, which positively correlates with disease activity; a neutrophil signature associated with lupus nephritis; and a decreased lymphocyte signature, reflecting lymphopenia. Tissue-level studies highlight the critical role of infiltrating immune cells in organ damage. Future research should leverage advanced technologies and integrate multi-omics data to deepen our understanding of SLE's molecular underpinnings, facilitating the development of targeted therapies.</p></div>\",\"PeriodicalId\":10392,\"journal\":{\"name\":\"Clinical immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1521661624004765\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521661624004765","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Transcriptomic studies unravel the molecular and cellular complexity of systemic lupus erythematosus: A review
Transcriptomic analysis plays a vital role in investigating Systemic Lupus Erythematosus (SLE), a complex autoimmune disease characterized by diverse clinical manifestations. This approach has yielded valuable insights into gene expression patterns and molecular regulatory mechanisms involved in SLE pathogenesis. Notably, interferon-stimulated gene (ISG) signatures are significantly upregulated in immune cells, skin, and kidney. Although a correlation with serological parameters and clinical symptoms has been proposed, the association with global disease activities remains controversial. Key findings in the field include an upregulated plasmablast signature, which positively correlates with disease activity; a neutrophil signature associated with lupus nephritis; and a decreased lymphocyte signature, reflecting lymphopenia. Tissue-level studies highlight the critical role of infiltrating immune cells in organ damage. Future research should leverage advanced technologies and integrate multi-omics data to deepen our understanding of SLE's molecular underpinnings, facilitating the development of targeted therapies.
期刊介绍:
Clinical Immunology publishes original research delving into the molecular and cellular foundations of immunological diseases. Additionally, the journal includes reviews covering timely subjects in basic immunology, along with case reports and letters to the editor.