取决于流体深度的生物膜特征及其对硫酸盐还原菌诱导的碳钢腐蚀的影响

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hongshou Huang, Albert Juhasz, Nikki Stanford
{"title":"取决于流体深度的生物膜特征及其对硫酸盐还原菌诱导的碳钢腐蚀的影响","authors":"Hongshou Huang,&nbsp;Albert Juhasz,&nbsp;Nikki Stanford","doi":"10.1016/j.ibiod.2024.105925","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the response of biofilm characteristics to variations in fluid depth and their influence on the corrosion behavior of carbon steel (C1020) under low-flow fluid conditions, utilizing <em>Desulfovibrio vulgaris</em>. The experiments were conducted in an anaerobic chamber at 30 °C, utilizing modified Baar's medium as the testing medium. The findings reveal that fluid depth significantly impacts biofilm-corrosion product composite formation, with deeper depths promoting thicker and more heterogeneous biofilm-corrosion product layer compared to shallower depths, where a thinner and more uniform biofilm-corrosion product layer is observed. Moreover, the characteristics of initially attached biofilms was verified as the primary factor affecting subsequent corrosion behavior during prolonged exposure. Corrosion analysis reveals that greater fluid depth leads to increased weight loss (91 ± 13.2 mg/cm<sup>2</sup>) and deeper pit depths (540 ± 69 μm), surpassing those observed in shallower test media (21 ± 2.3 mg/cm<sup>2</sup> and 105 ± 17 μm) after 28 days of exposure. The corrosion products within the biofilm were predominantly FeS and Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O. A direct relationship was observed between the thickness of this biofilm-corrosion product layer and the progression of pit depth, suggesting a strong correlation between carbon steel corrosion and biofilm development in limited fluid depths (e.g., 5–15 mm). Furthermore, a significant association between the deepest pits (average) and the number of sessile cells within the biofilm underscores the pivotal role of sessile cell numbers in carbon steel corrosion.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0964830524001963/pdfft?md5=869dbb512d783f35a241c609a40fc254&pid=1-s2.0-S0964830524001963-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluid depth-dependent biofilm characteristics and their influence on sulfate-reducing bacteria-induced corrosion of carbon steel\",\"authors\":\"Hongshou Huang,&nbsp;Albert Juhasz,&nbsp;Nikki Stanford\",\"doi\":\"10.1016/j.ibiod.2024.105925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the response of biofilm characteristics to variations in fluid depth and their influence on the corrosion behavior of carbon steel (C1020) under low-flow fluid conditions, utilizing <em>Desulfovibrio vulgaris</em>. The experiments were conducted in an anaerobic chamber at 30 °C, utilizing modified Baar's medium as the testing medium. The findings reveal that fluid depth significantly impacts biofilm-corrosion product composite formation, with deeper depths promoting thicker and more heterogeneous biofilm-corrosion product layer compared to shallower depths, where a thinner and more uniform biofilm-corrosion product layer is observed. Moreover, the characteristics of initially attached biofilms was verified as the primary factor affecting subsequent corrosion behavior during prolonged exposure. Corrosion analysis reveals that greater fluid depth leads to increased weight loss (91 ± 13.2 mg/cm<sup>2</sup>) and deeper pit depths (540 ± 69 μm), surpassing those observed in shallower test media (21 ± 2.3 mg/cm<sup>2</sup> and 105 ± 17 μm) after 28 days of exposure. The corrosion products within the biofilm were predominantly FeS and Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·8H<sub>2</sub>O. A direct relationship was observed between the thickness of this biofilm-corrosion product layer and the progression of pit depth, suggesting a strong correlation between carbon steel corrosion and biofilm development in limited fluid depths (e.g., 5–15 mm). Furthermore, a significant association between the deepest pits (average) and the number of sessile cells within the biofilm underscores the pivotal role of sessile cell numbers in carbon steel corrosion.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0964830524001963/pdfft?md5=869dbb512d783f35a241c609a40fc254&pid=1-s2.0-S0964830524001963-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830524001963\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001963","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用脱硫弧菌(Desulfovibrio vulgaris)研究了生物膜特性对流体深度变化的响应及其对低流量流体条件下碳钢(C1020)腐蚀行为的影响。实验在 30 °C 的厌氧室中进行,使用改良巴氏培养基作为测试介质。研究结果表明,流体深度对生物膜-腐蚀产物复合层的形成有重大影响,与较浅的生物膜-腐蚀产物层相比,较深的生物膜-腐蚀产物层更厚、更不均匀,而较浅的生物膜-腐蚀产物层则更薄、更均匀。此外,最初附着的生物膜的特性被证实是影响长期暴露期间后续腐蚀行为的主要因素。腐蚀分析表明,流体深度越大,重量损失越大(91 ± 13.2 mg/cm2),凹坑深度越深(540 ± 69 μm),超过了暴露 28 天后在较浅测试介质中观察到的结果(21 ± 2.3 mg/cm2 和 105 ± 17 μm)。生物膜内的腐蚀产物主要是 FeS 和 Fe3(PO4)2-8H2O。生物膜-腐蚀产物层的厚度与凹坑深度的进展之间存在直接关系,这表明在有限的流体深度(如 5-15 毫米)内,碳钢腐蚀与生物膜发展之间存在密切联系。此外,最深的凹坑(平均值)与生物膜内的无柄细胞数量之间存在明显的关联,这突出表明了无柄细胞数量在碳钢腐蚀中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid depth-dependent biofilm characteristics and their influence on sulfate-reducing bacteria-induced corrosion of carbon steel

This study investigates the response of biofilm characteristics to variations in fluid depth and their influence on the corrosion behavior of carbon steel (C1020) under low-flow fluid conditions, utilizing Desulfovibrio vulgaris. The experiments were conducted in an anaerobic chamber at 30 °C, utilizing modified Baar's medium as the testing medium. The findings reveal that fluid depth significantly impacts biofilm-corrosion product composite formation, with deeper depths promoting thicker and more heterogeneous biofilm-corrosion product layer compared to shallower depths, where a thinner and more uniform biofilm-corrosion product layer is observed. Moreover, the characteristics of initially attached biofilms was verified as the primary factor affecting subsequent corrosion behavior during prolonged exposure. Corrosion analysis reveals that greater fluid depth leads to increased weight loss (91 ± 13.2 mg/cm2) and deeper pit depths (540 ± 69 μm), surpassing those observed in shallower test media (21 ± 2.3 mg/cm2 and 105 ± 17 μm) after 28 days of exposure. The corrosion products within the biofilm were predominantly FeS and Fe3(PO4)2·8H2O. A direct relationship was observed between the thickness of this biofilm-corrosion product layer and the progression of pit depth, suggesting a strong correlation between carbon steel corrosion and biofilm development in limited fluid depths (e.g., 5–15 mm). Furthermore, a significant association between the deepest pits (average) and the number of sessile cells within the biofilm underscores the pivotal role of sessile cell numbers in carbon steel corrosion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信