Mingyue Ruan, Xinran Wang, Mingxue Guo, Zucheng Hu, Wenjun Hu, Zishuo Guo, Wanling Chen, Shiyan Li, Kai Wu, Shouying Du, Ning Han
{"title":"用于联合化疗和光疗的甘草酸和 IR780 自组装纳米粒子","authors":"Mingyue Ruan, Xinran Wang, Mingxue Guo, Zucheng Hu, Wenjun Hu, Zishuo Guo, Wanling Chen, Shiyan Li, Kai Wu, Shouying Du, Ning Han","doi":"10.1016/j.colsurfb.2024.114254","DOIUrl":null,"url":null,"abstract":"<div><p>Combined chemo-phototherapy has shown considerable advantages and potential in cancer treatment. For this purpose, self-assembled nanoparticles by gambogic acid (GA) and IR780 (referred to as GA-IR780 NPs) were prepared. Herein, GA, an active compound derived from <em>Garcinia hanburyi</em> Hook.f, was selected as a chemo-agent. IR780 was used as a photothermal agent as well as a photosensitizer, which could kill tumor cells via photothermal effect and photodynamic effect. The obtained GA-IR780 NPs were uniform spheres with particle size of ca. 50 nm. The drug loading efficiency of GA and IR780 was 38.42 % and 56.64 %, respectively. The GA-IR780 NPs exhibited excellent photothermal properties as well as photodynamic effect when irradiated by near infrared (NIR) light (808 nm, 2.0 W/cm<sup>2</sup>). Moreover, the GA-IR780 NPs showed enhanced cytotoxicity with NIR light activation. Results of animal experiments showed that GA-IR780 NPs had the most significant tumor inhibition when irradiated by laser, and the results of <em>H&E</em>, Ki-67 and TUNEL staining confirmed that the GA-IR780 NPs+Laser group caused the most severe tumor tissue damage. The above results indicated that GA-mediated chemotherapy combining with IR780-based phototherapy could significantly improve the anti-tumor efficacy.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gambogic acid and IR780 self-assembled nanoparticles for combined chemo-phototherapy\",\"authors\":\"Mingyue Ruan, Xinran Wang, Mingxue Guo, Zucheng Hu, Wenjun Hu, Zishuo Guo, Wanling Chen, Shiyan Li, Kai Wu, Shouying Du, Ning Han\",\"doi\":\"10.1016/j.colsurfb.2024.114254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Combined chemo-phototherapy has shown considerable advantages and potential in cancer treatment. For this purpose, self-assembled nanoparticles by gambogic acid (GA) and IR780 (referred to as GA-IR780 NPs) were prepared. Herein, GA, an active compound derived from <em>Garcinia hanburyi</em> Hook.f, was selected as a chemo-agent. IR780 was used as a photothermal agent as well as a photosensitizer, which could kill tumor cells via photothermal effect and photodynamic effect. The obtained GA-IR780 NPs were uniform spheres with particle size of ca. 50 nm. The drug loading efficiency of GA and IR780 was 38.42 % and 56.64 %, respectively. The GA-IR780 NPs exhibited excellent photothermal properties as well as photodynamic effect when irradiated by near infrared (NIR) light (808 nm, 2.0 W/cm<sup>2</sup>). Moreover, the GA-IR780 NPs showed enhanced cytotoxicity with NIR light activation. Results of animal experiments showed that GA-IR780 NPs had the most significant tumor inhibition when irradiated by laser, and the results of <em>H&E</em>, Ki-67 and TUNEL staining confirmed that the GA-IR780 NPs+Laser group caused the most severe tumor tissue damage. The above results indicated that GA-mediated chemotherapy combining with IR780-based phototherapy could significantly improve the anti-tumor efficacy.</p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524005137\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524005137","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Gambogic acid and IR780 self-assembled nanoparticles for combined chemo-phototherapy
Combined chemo-phototherapy has shown considerable advantages and potential in cancer treatment. For this purpose, self-assembled nanoparticles by gambogic acid (GA) and IR780 (referred to as GA-IR780 NPs) were prepared. Herein, GA, an active compound derived from Garcinia hanburyi Hook.f, was selected as a chemo-agent. IR780 was used as a photothermal agent as well as a photosensitizer, which could kill tumor cells via photothermal effect and photodynamic effect. The obtained GA-IR780 NPs were uniform spheres with particle size of ca. 50 nm. The drug loading efficiency of GA and IR780 was 38.42 % and 56.64 %, respectively. The GA-IR780 NPs exhibited excellent photothermal properties as well as photodynamic effect when irradiated by near infrared (NIR) light (808 nm, 2.0 W/cm2). Moreover, the GA-IR780 NPs showed enhanced cytotoxicity with NIR light activation. Results of animal experiments showed that GA-IR780 NPs had the most significant tumor inhibition when irradiated by laser, and the results of H&E, Ki-67 and TUNEL staining confirmed that the GA-IR780 NPs+Laser group caused the most severe tumor tissue damage. The above results indicated that GA-mediated chemotherapy combining with IR780-based phototherapy could significantly improve the anti-tumor efficacy.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.