原花青素通过聚合物诱导液体前体工艺对牙本质再矿化的促进作用

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Chaoqun Chen , Haiyan Lai , Pingping Song , Xinhua Gu
{"title":"原花青素通过聚合物诱导液体前体工艺对牙本质再矿化的促进作用","authors":"Chaoqun Chen ,&nbsp;Haiyan Lai ,&nbsp;Pingping Song ,&nbsp;Xinhua Gu","doi":"10.1016/j.jmbbm.2024.106750","DOIUrl":null,"url":null,"abstract":"<div><p>Proanthocyanidin (PA) has demonstrated promise as a dental biomodifier for maintaining dentin collagen integrity, yet there is limited evidence regarding its efficacy in dentin repair. The aim of this study was to investigate the effect of PA on dentin remineralization through the polymer induced liquid precursor (PILP) process, as well as to assess the mechanical properties of the restored dentin. Demineralized dentin was treated with a PA-contained remineralization medium, resulting in the formation of PA-amorphous calcium phosphate (ACP) nanoparticles via the PILP process. The kinetics and microstructure of remineralized dentin were examined through the use of Fourier transform infrared spectroscopy(FTIR), attenuated total reflectance-FTIR, scanning electron microscopy, transmission electron microscopy. The results showed that the application of PA facilitated the process of dentin remineralization, achieving completion within 48 h, demonstrating a notable reduction in time required. Following remineralization, the mechanical properties of the dentin exhibited an elastic modulus of 15.89 ± 1.70 GPa and a hardness of 0.47 ± 0.08 GPa, which were similar to those of natural dentin. These findings suggest that combining PA with the PILP process can promote dentin remineralization and improve its mechanical properties, offering a promising new approach for dentin repair in clinical practice.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106750"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promotion effect of proanthocyanidin on dentin remineralization via the polymer induced liquid precursor process\",\"authors\":\"Chaoqun Chen ,&nbsp;Haiyan Lai ,&nbsp;Pingping Song ,&nbsp;Xinhua Gu\",\"doi\":\"10.1016/j.jmbbm.2024.106750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proanthocyanidin (PA) has demonstrated promise as a dental biomodifier for maintaining dentin collagen integrity, yet there is limited evidence regarding its efficacy in dentin repair. The aim of this study was to investigate the effect of PA on dentin remineralization through the polymer induced liquid precursor (PILP) process, as well as to assess the mechanical properties of the restored dentin. Demineralized dentin was treated with a PA-contained remineralization medium, resulting in the formation of PA-amorphous calcium phosphate (ACP) nanoparticles via the PILP process. The kinetics and microstructure of remineralized dentin were examined through the use of Fourier transform infrared spectroscopy(FTIR), attenuated total reflectance-FTIR, scanning electron microscopy, transmission electron microscopy. The results showed that the application of PA facilitated the process of dentin remineralization, achieving completion within 48 h, demonstrating a notable reduction in time required. Following remineralization, the mechanical properties of the dentin exhibited an elastic modulus of 15.89 ± 1.70 GPa and a hardness of 0.47 ± 0.08 GPa, which were similar to those of natural dentin. These findings suggest that combining PA with the PILP process can promote dentin remineralization and improve its mechanical properties, offering a promising new approach for dentin repair in clinical practice.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106750\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003825\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003825","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

原花青素(PA)作为一种牙科生物改良剂,在保持牙本质胶原完整性方面具有广阔的前景,但有关其在牙本质修复方面功效的证据却很有限。本研究的目的是通过聚合物诱导液体前体(PILP)过程研究 PA 对牙本质再矿化的影响,并评估修复后牙本质的机械性能。用含有 PA 的再矿化介质处理脱矿牙本质,通过 PILP 过程形成 PA- 无定形磷酸钙(ACP)纳米颗粒。通过傅立叶变换红外光谱(FTIR)、衰减全反射-FTIR、扫描电子显微镜和透射电子显微镜对再矿化牙本质的动力学和微观结构进行了研究。结果表明,PA 的应用促进了牙本质的再矿化过程,在 48 小时内就完成了再矿化,明显缩短了所需的时间。再矿化后,牙本质的机械性能显示为 15.89 ± 1.70 GPa 的弹性模量和 0.47 ± 0.08 GPa 的硬度,与天然牙本质的机械性能相似。这些研究结果表明,将 PA 与 PILP 工艺相结合可促进牙本质再矿化并改善其机械性能,为临床实践中的牙本质修复提供了一种前景广阔的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promotion effect of proanthocyanidin on dentin remineralization via the polymer induced liquid precursor process

Promotion effect of proanthocyanidin on dentin remineralization via the polymer induced liquid precursor process

Proanthocyanidin (PA) has demonstrated promise as a dental biomodifier for maintaining dentin collagen integrity, yet there is limited evidence regarding its efficacy in dentin repair. The aim of this study was to investigate the effect of PA on dentin remineralization through the polymer induced liquid precursor (PILP) process, as well as to assess the mechanical properties of the restored dentin. Demineralized dentin was treated with a PA-contained remineralization medium, resulting in the formation of PA-amorphous calcium phosphate (ACP) nanoparticles via the PILP process. The kinetics and microstructure of remineralized dentin were examined through the use of Fourier transform infrared spectroscopy(FTIR), attenuated total reflectance-FTIR, scanning electron microscopy, transmission electron microscopy. The results showed that the application of PA facilitated the process of dentin remineralization, achieving completion within 48 h, demonstrating a notable reduction in time required. Following remineralization, the mechanical properties of the dentin exhibited an elastic modulus of 15.89 ± 1.70 GPa and a hardness of 0.47 ± 0.08 GPa, which were similar to those of natural dentin. These findings suggest that combining PA with the PILP process can promote dentin remineralization and improve its mechanical properties, offering a promising new approach for dentin repair in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信