基于时空模式的岩石隧道变形预测混合深度学习方法

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Junfeng Sun , Yong Fang , Hu Luo , Zhigang Yao , Long Xiang , Jianfeng Wang , Yubo Wang , Yifan Jiang
{"title":"基于时空模式的岩石隧道变形预测混合深度学习方法","authors":"Junfeng Sun ,&nbsp;Yong Fang ,&nbsp;Hu Luo ,&nbsp;Zhigang Yao ,&nbsp;Long Xiang ,&nbsp;Jianfeng Wang ,&nbsp;Yubo Wang ,&nbsp;Yifan Jiang","doi":"10.1016/j.undsp.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (<span><math><mrow><mi>RMSE</mi></mrow></math></span>), mean absolute error (<span><math><mrow><mi>MAE</mi></mrow></math></span>), and coefficient of determination (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 100-118"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000813/pdfft?md5=553352262c269f7f53faaab720bd548a&pid=1-s2.0-S2467967424000813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns\",\"authors\":\"Junfeng Sun ,&nbsp;Yong Fang ,&nbsp;Hu Luo ,&nbsp;Zhigang Yao ,&nbsp;Long Xiang ,&nbsp;Jianfeng Wang ,&nbsp;Yubo Wang ,&nbsp;Yifan Jiang\",\"doi\":\"10.1016/j.undsp.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (<span><math><mrow><mi>RMSE</mi></mrow></math></span>), mean absolute error (<span><math><mrow><mi>MAE</mi></mrow></math></span>), and coefficient of determination (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"20 \",\"pages\":\"Pages 100-118\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000813/pdfft?md5=553352262c269f7f53faaab720bd548a&pid=1-s2.0-S2467967424000813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000813\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000813","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

预测隧道变形的能力对于确保隧道结构的可靠性、安全性和可持续性具有重要意义。然而,现有的变形预测模型往往将空间特征作为时间序列预测问题来处理,从而简化或忽略了空间特征对变形的影响。本研究利用大峡谷隧道的监测数据,基于相邻地段历史变形的时空特征,引入了一种有效的数据驱动型隧道变形预测方法。所提出的模型是图注意网络(GAT)和双向长短期记忆网络(Bi-LSTM)的结合,具有强大的时空预测能力。此外,研究还探讨了其他可能的空间连接和模型的可扩展性。结果表明,所提出的模型优于其他深度学习模型,其均方根误差(RMSE)、平均绝对误差(MAE)和判定系数(R2)值分别为 0.34 mm、0.23 mm 和 0.94。事实证明,基于直观空间连接的图结构更适合应对预测变形的挑战。将 GAT-LSTM 与迁移学习技术相结合,当扩展到其他数据有限的隧道时,仍能保持稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns

The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信