皮质θ振荡的自适应闭环调节:洞察导航决策的神经动态

IF 7.6 1区 医学 Q1 CLINICAL NEUROLOGY
Farhad Farkhondeh Tale Navi , Soomaayeh Heysieattalab , Mohammad Reza Raoufy , Saied Sabaghypour , Milad Nazari , Mohammad Ali Nazari
{"title":"皮质θ振荡的自适应闭环调节:洞察导航决策的神经动态","authors":"Farhad Farkhondeh Tale Navi ,&nbsp;Soomaayeh Heysieattalab ,&nbsp;Mohammad Reza Raoufy ,&nbsp;Saied Sabaghypour ,&nbsp;Milad Nazari ,&nbsp;Mohammad Ali Nazari","doi":"10.1016/j.brs.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.</p></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"17 5","pages":"Pages 1101-1118"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1935861X24001608/pdfft?md5=e6e386dcb782540ba3a796c365e4d0ff&pid=1-s2.0-S1935861X24001608-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making\",\"authors\":\"Farhad Farkhondeh Tale Navi ,&nbsp;Soomaayeh Heysieattalab ,&nbsp;Mohammad Reza Raoufy ,&nbsp;Saied Sabaghypour ,&nbsp;Milad Nazari ,&nbsp;Mohammad Ali Nazari\",\"doi\":\"10.1016/j.brs.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.</p></div>\",\"PeriodicalId\":9206,\"journal\":{\"name\":\"Brain Stimulation\",\"volume\":\"17 5\",\"pages\":\"Pages 1101-1118\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24001608/pdfft?md5=e6e386dcb782540ba3a796c365e4d0ff&pid=1-s2.0-S1935861X24001608-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Stimulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24001608\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X24001608","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导航决策任务,如空间工作记忆(SWM),高度依赖于来自多个皮层和皮层下区域的信息整合。空间工作记忆任务的表现与θ节律有关,包括与运动和记忆有关的低频振荡。腹侧海马(vHPC)和内侧前额叶皮层(mPFC)之间的相互作用反映在θ同步上,这在SWM过程中信息处理的各个步骤中至关重要。我们使用闭环神经反馈(CLNF)系统来上调 mPFC 的 Theta 功率,并研究其对动物模型的回路动力学和行为的影响。具体来说,我们假设增强 mPFC 的θ节律功率可能会改善 SWM 的表现。动物被分为三组:闭环组(CL)、随机环组(RL)和关闭组(无刺激)。我们记录了 mPFC 中的局部场电位(LFP),同时向外侧下丘脑(LH)(该区域被认为是奖赏相关的中枢区域之一)发送了基于皮层θ活动的电奖赏刺激。我们还记录了 vHPC 的 LFP,以评估相关的皮层下神经变化。结果显示,CL 组的 mPFC 和 vHPC 的 Theta 功率均持续上升。我们的分析还显示,通过θ频段的一致性和交叉相关性测量,在CL组的刺激过程中,mPFC-vHPC在θ范围内的同步性有所提高。在随后的行为结果中,这一回路的强化提高了空间决策能力。我们的研究结果提供了特定θ上调与 SWM 表现之间关系的直接证据,并表明θ振荡与认知过程密不可分。总之,这项研究凸显了自适应 CLNF 系统在研究各种脑回路神经动态方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making

Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Stimulation
Brain Stimulation 医学-临床神经学
CiteScore
13.10
自引率
9.10%
发文量
256
审稿时长
72 days
期刊介绍: Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation. Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信