{"title":"有向超星椭圆曲线和素级艾希勒阶","authors":"Guanju Xiao , Zijian Zhou , Longjiang Qu","doi":"10.1016/j.ffa.2024.102501","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>p</mi><mo>></mo><mn>3</mn></math></span> be a prime and <em>E</em> be a supersingular elliptic curve defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Let <em>c</em> be a prime with <span><math><mi>c</mi><mo><</mo><mn>3</mn><mi>p</mi><mo>/</mo><mn>16</mn></math></span> and <em>G</em> be a subgroup of <span><math><mi>E</mi><mo>[</mo><mi>c</mi><mo>]</mo></math></span> of order <em>c</em>. The pair <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is called a supersingular elliptic curve with level-<em>c</em> structure, and the endomorphism ring <span><math><mtext>End</mtext><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is isomorphic to an Eichler order with level <em>c</em>. We construct two kinds of Eichler orders <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> with level <em>c</em>. Interestingly, we prove that each <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> or <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> can represent a primitive reduced binary quadratic form with discriminant <span><math><mo>−</mo><mn>16</mn><mi>c</mi><mi>p</mi></math></span> or <span><math><mo>−</mo><mi>c</mi><mi>p</mi></math></span> respectively. If a curve <em>E</em> is <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented or <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>-oriented, then we prove that <span><math><mtext>End</mtext><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is isomorphic to <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> or <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> respectively. Due to the fact that <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented isogenies between <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented elliptic curves could be represented by quadratic forms, we show that these isogenies are reflected in the corresponding Eichler orders via the composition law for their corresponding quadratic forms.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oriented supersingular elliptic curves and Eichler orders of prime level\",\"authors\":\"Guanju Xiao , Zijian Zhou , Longjiang Qu\",\"doi\":\"10.1016/j.ffa.2024.102501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>p</mi><mo>></mo><mn>3</mn></math></span> be a prime and <em>E</em> be a supersingular elliptic curve defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Let <em>c</em> be a prime with <span><math><mi>c</mi><mo><</mo><mn>3</mn><mi>p</mi><mo>/</mo><mn>16</mn></math></span> and <em>G</em> be a subgroup of <span><math><mi>E</mi><mo>[</mo><mi>c</mi><mo>]</mo></math></span> of order <em>c</em>. The pair <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is called a supersingular elliptic curve with level-<em>c</em> structure, and the endomorphism ring <span><math><mtext>End</mtext><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is isomorphic to an Eichler order with level <em>c</em>. We construct two kinds of Eichler orders <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> with level <em>c</em>. Interestingly, we prove that each <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> or <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> can represent a primitive reduced binary quadratic form with discriminant <span><math><mo>−</mo><mn>16</mn><mi>c</mi><mi>p</mi></math></span> or <span><math><mo>−</mo><mi>c</mi><mi>p</mi></math></span> respectively. If a curve <em>E</em> is <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented or <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>-oriented, then we prove that <span><math><mtext>End</mtext><mo>(</mo><mi>E</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> is isomorphic to <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> or <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> respectively. Due to the fact that <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented isogenies between <span><math><mi>Z</mi><mo>[</mo><msqrt><mrow><mo>−</mo><mi>c</mi><mi>p</mi></mrow></msqrt><mo>]</mo></math></span>-oriented elliptic curves could be represented by quadratic forms, we show that these isogenies are reflected in the corresponding Eichler orders via the composition law for their corresponding quadratic forms.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001400\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001400","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 p>3 是素数,E 是定义在 Fp2 上的超椭圆曲线。让 c 是 c<3p/16 的素数,G 是 E[c] 的一个阶为 c 的子群。这对 (E,G) 称为具有 c 级结构的超椭圆曲线,其内定环 End(E,G) 与具有 c 级结构的艾希勒阶同构。有趣的是,我们证明了每个 Oc(q,r)或 Oc′(q,r′)可以分别表示一个判别式为 -16cp 或 -cp 的原始还原二元二次型。如果曲线 E 是 Z[-cp]-oriented 或 Z[1+-cp2]-oriented 的,那么我们证明 End(E,G) 分别与 Oc(q,r) 或 Oc′(q,r′)同构。由于 Z[-cp]-oriented 椭圆曲线之间的 Z[-cp]-oriented 同素异形可以用二次型来表示,我们证明了这些同素异形通过相应二次型的组成法则反映在相应的艾希勒阶中。
Oriented supersingular elliptic curves and Eichler orders of prime level
Let be a prime and E be a supersingular elliptic curve defined over . Let c be a prime with and G be a subgroup of of order c. The pair is called a supersingular elliptic curve with level-c structure, and the endomorphism ring is isomorphic to an Eichler order with level c. We construct two kinds of Eichler orders and with level c. Interestingly, we prove that each or can represent a primitive reduced binary quadratic form with discriminant or respectively. If a curve E is -oriented or -oriented, then we prove that is isomorphic to or respectively. Due to the fact that -oriented isogenies between -oriented elliptic curves could be represented by quadratic forms, we show that these isogenies are reflected in the corresponding Eichler orders via the composition law for their corresponding quadratic forms.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.