带电 BTZ 黑洞的内部体积

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
{"title":"带电 BTZ 黑洞的内部体积","authors":"","doi":"10.1016/j.nuclphysb.2024.116676","DOIUrl":null,"url":null,"abstract":"<div><p>In Schwarzschild spacetime, Reinhart (1973) has shown the hypersurface <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub><mo>=</mo><mn>3</mn><mi>M</mi><mo>/</mo><mn>2</mn></math></span> (the subscript stands for “steady-state”) to be the maximal hypersurface. This steady-state radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math></span> plays a crucial role in defining and evaluating the interior volume of a black hole. In this article, we investigate various methods to compute the maximal interior volume of a charged BTZ black hole. We find that the presence of charge <em>Q</em> in a black hole introduces a “<em>log</em>” term in the metric as a result of which, an analytical solution for the volume does not exist. So we first compute the volume of the black hole for the limiting case when the charge <em>Q</em> is very small (i.e., <span><math><mi>Q</mi><mo>≪</mo><mn>1</mn></math></span>: <em>Q</em> is a dimensionless parameter in (2+1) dimensions) and then carry out a numerical analysis to solve for the volume for more generic values of the charge. We find that the volume grows monotonically with the advance time <em>v</em>. We further investigate the functional behavior of the entropy of a massless scalar field living on the maximal hypersurface of a near-extremal black hole. We show that this volume entropy exhibits a very different functional form from the horizon entropy.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002426/pdfft?md5=b4bb16d16976d0835b35d3a461927b5d&pid=1-s2.0-S0550321324002426-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Interior volume of the charged BTZ black holes\",\"authors\":\"\",\"doi\":\"10.1016/j.nuclphysb.2024.116676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Schwarzschild spacetime, Reinhart (1973) has shown the hypersurface <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub><mo>=</mo><mn>3</mn><mi>M</mi><mo>/</mo><mn>2</mn></math></span> (the subscript stands for “steady-state”) to be the maximal hypersurface. This steady-state radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>s</mi></mrow></msub></math></span> plays a crucial role in defining and evaluating the interior volume of a black hole. In this article, we investigate various methods to compute the maximal interior volume of a charged BTZ black hole. We find that the presence of charge <em>Q</em> in a black hole introduces a “<em>log</em>” term in the metric as a result of which, an analytical solution for the volume does not exist. So we first compute the volume of the black hole for the limiting case when the charge <em>Q</em> is very small (i.e., <span><math><mi>Q</mi><mo>≪</mo><mn>1</mn></math></span>: <em>Q</em> is a dimensionless parameter in (2+1) dimensions) and then carry out a numerical analysis to solve for the volume for more generic values of the charge. We find that the volume grows monotonically with the advance time <em>v</em>. We further investigate the functional behavior of the entropy of a massless scalar field living on the maximal hypersurface of a near-extremal black hole. We show that this volume entropy exhibits a very different functional form from the horizon entropy.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002426/pdfft?md5=b4bb16d16976d0835b35d3a461927b5d&pid=1-s2.0-S0550321324002426-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002426\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002426","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

在施瓦兹柴尔德时空中,莱因哈特(1973 年)证明了超曲面 rss=3M/2(下标代表 "稳态")是最大超曲面。这个稳态半径 rss 在定义和评估黑洞内部体积时起着至关重要的作用。在本文中,我们研究了计算带电 BTZ 黑洞最大内部体积的各种方法。我们发现,黑洞中电荷 Q 的存在在度量中引入了一个 "对数 "项,因此不存在体积的解析解。因此,我们首先计算了电荷 Q 非常小(即 Q≪1:Q 是 (2+1) 维的无量纲参数)时黑洞体积的极限情况,然后进行数值分析,求解电荷的更一般值的体积。我们进一步研究了生活在近极性黑洞最大超表面上的无质量标量场的熵函数行为。我们证明,这种体积熵的函数形式与视界熵截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interior volume of the charged BTZ black holes

In Schwarzschild spacetime, Reinhart (1973) has shown the hypersurface rss=3M/2 (the subscript stands for “steady-state”) to be the maximal hypersurface. This steady-state radius rss plays a crucial role in defining and evaluating the interior volume of a black hole. In this article, we investigate various methods to compute the maximal interior volume of a charged BTZ black hole. We find that the presence of charge Q in a black hole introduces a “log” term in the metric as a result of which, an analytical solution for the volume does not exist. So we first compute the volume of the black hole for the limiting case when the charge Q is very small (i.e., Q1: Q is a dimensionless parameter in (2+1) dimensions) and then carry out a numerical analysis to solve for the volume for more generic values of the charge. We find that the volume grows monotonically with the advance time v. We further investigate the functional behavior of the entropy of a massless scalar field living on the maximal hypersurface of a near-extremal black hole. We show that this volume entropy exhibits a very different functional form from the horizon entropy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信