{"title":"探索山苍子和枯草芽孢杆菌提取物在防治柠檬黄单胞菌中的抗菌功效","authors":"","doi":"10.1016/j.bcab.2024.103348","DOIUrl":null,"url":null,"abstract":"<div><p>Biofilm plays a critical role in protecting the associated bacterial colonies. Citrus canker caused by <em>Xanthomonas citri,</em> resulted in remarkable yield reduction in citrus orchards. This study aims to evaluate the <em>anti</em>-biofilm properties of <em>S. hortensis</em> and <em>B. subtilis</em> extracts against <em>X. citri.</em> The antibacterial effects of both extracts were evaluated using the disk diffusion method and 96-well microdilution plates. Crystal violet and XTT procedures were employed to assess the inhibition of adhesion and antibiofilm effects of both extracts. The checkboard titration method was applied to determine the synergistic effects of the plant-bacterial extracts. The antibiofilm effects were confirmed by the light microscopy method. The results showed that the antibacterial and antibiofilm properties of both extracts varied. The MIC values of <em>S. hortensis</em> and <em>B. subtilis</em> extracts were 6.25 and 50 mg/ml, respectively. In these concentrations the inhibition of adhesion effects of <em>S. hortensis</em> and <em>B. subtilis</em> were 70% and 80%, whereas their antibiofilm effects were 60% and 72%. <em>S. hortensis</em> and <em>B. subtilis</em> extracts showed 63% and 76% antibiofilm activity, respectively, using the XTT test. The extracts showed synergistic effects, resulting in higher inhibition rates in combinatorial applications. Molecular docking results also confirmed that the secondary metabolites of <em>S. hortensis</em> could interact with different <em>X. citri</em> proteins differentially. Further large-scale studies on combinatorial antibiofilm effects of plant and bacterial extracts against citrus pathogens will provide new opportunities to develop safe and applicable reagents to control these destructive diseases.</p></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the antibacterial efficacy of Satureja hortensis and Bacillus subtilis extracts in combating Xanthomonas citri\",\"authors\":\"\",\"doi\":\"10.1016/j.bcab.2024.103348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biofilm plays a critical role in protecting the associated bacterial colonies. Citrus canker caused by <em>Xanthomonas citri,</em> resulted in remarkable yield reduction in citrus orchards. This study aims to evaluate the <em>anti</em>-biofilm properties of <em>S. hortensis</em> and <em>B. subtilis</em> extracts against <em>X. citri.</em> The antibacterial effects of both extracts were evaluated using the disk diffusion method and 96-well microdilution plates. Crystal violet and XTT procedures were employed to assess the inhibition of adhesion and antibiofilm effects of both extracts. The checkboard titration method was applied to determine the synergistic effects of the plant-bacterial extracts. The antibiofilm effects were confirmed by the light microscopy method. The results showed that the antibacterial and antibiofilm properties of both extracts varied. The MIC values of <em>S. hortensis</em> and <em>B. subtilis</em> extracts were 6.25 and 50 mg/ml, respectively. In these concentrations the inhibition of adhesion effects of <em>S. hortensis</em> and <em>B. subtilis</em> were 70% and 80%, whereas their antibiofilm effects were 60% and 72%. <em>S. hortensis</em> and <em>B. subtilis</em> extracts showed 63% and 76% antibiofilm activity, respectively, using the XTT test. The extracts showed synergistic effects, resulting in higher inhibition rates in combinatorial applications. Molecular docking results also confirmed that the secondary metabolites of <em>S. hortensis</em> could interact with different <em>X. citri</em> proteins differentially. Further large-scale studies on combinatorial antibiofilm effects of plant and bacterial extracts against citrus pathogens will provide new opportunities to develop safe and applicable reagents to control these destructive diseases.</p></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818124003323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
生物膜在保护相关细菌菌落方面起着至关重要的作用。由柑橘黄单胞菌(Xanthomonas citri)引起的柑橘腐烂病导致柑橘园显著减产。本研究旨在评估 S. hortensis 和 B. subtilis 提取物对 X. citri 的抗生物膜特性。采用盘扩散法和 96 孔微稀释板对两种提取物的抗菌效果进行了评估。采用水晶紫和 XTT 程序评估两种提取物的抑制粘附和抗生物膜效果。采用棋盘滴定法确定植物-细菌提取物的协同作用。抗生物膜效果通过光学显微镜法进行了确认。结果表明,两种提取物的抗菌和抗生物膜特性各不相同。S. hortensis 和 B. subtilis 提取物的 MIC 值分别为 6.25 毫克/毫升和 50 毫克/毫升。在这些浓度下,S. hortensis 和 B. subtilis 的抑制粘附效果分别为 70% 和 80%,而它们的抗生物膜效果分别为 60% 和 72%。在 XTT 试验中,S. hortensis 和 B. subtilis 提取物的抗生物膜活性分别为 63% 和 76%。这些提取物具有协同作用,因此在组合应用中具有更高的抑制率。分子对接结果也证实了 S. hortensis 的次生代谢产物能与不同的 X. citri 蛋白发生不同的相互作用。进一步大规模研究植物和细菌提取物对柑橘病原体的组合抗生物膜效应,将为开发安全适用的试剂来控制这些破坏性疾病提供新的机遇。
Exploring the antibacterial efficacy of Satureja hortensis and Bacillus subtilis extracts in combating Xanthomonas citri
Biofilm plays a critical role in protecting the associated bacterial colonies. Citrus canker caused by Xanthomonas citri, resulted in remarkable yield reduction in citrus orchards. This study aims to evaluate the anti-biofilm properties of S. hortensis and B. subtilis extracts against X. citri. The antibacterial effects of both extracts were evaluated using the disk diffusion method and 96-well microdilution plates. Crystal violet and XTT procedures were employed to assess the inhibition of adhesion and antibiofilm effects of both extracts. The checkboard titration method was applied to determine the synergistic effects of the plant-bacterial extracts. The antibiofilm effects were confirmed by the light microscopy method. The results showed that the antibacterial and antibiofilm properties of both extracts varied. The MIC values of S. hortensis and B. subtilis extracts were 6.25 and 50 mg/ml, respectively. In these concentrations the inhibition of adhesion effects of S. hortensis and B. subtilis were 70% and 80%, whereas their antibiofilm effects were 60% and 72%. S. hortensis and B. subtilis extracts showed 63% and 76% antibiofilm activity, respectively, using the XTT test. The extracts showed synergistic effects, resulting in higher inhibition rates in combinatorial applications. Molecular docking results also confirmed that the secondary metabolites of S. hortensis could interact with different X. citri proteins differentially. Further large-scale studies on combinatorial antibiofilm effects of plant and bacterial extracts against citrus pathogens will provide new opportunities to develop safe and applicable reagents to control these destructive diseases.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.