西北太平洋前兆对厄尔尼诺/南方涛动预测延长的可解释人工智能

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Liping Deng , Krishna Borhara , Parichart Promchote , Shih-Yu Wang
{"title":"西北太平洋前兆对厄尔尼诺/南方涛动预测延长的可解释人工智能","authors":"Liping Deng ,&nbsp;Krishna Borhara ,&nbsp;Parichart Promchote ,&nbsp;Shih-Yu Wang","doi":"10.1016/j.ocemod.2024.102431","DOIUrl":null,"url":null,"abstract":"<div><p>In this short communication, we report initial success in utilizing existing Explainable Artificial Intelligence (XAI) methodology to investigate an emerging precursor of the El Niño-Southern Oscillation (ENSO), manifest as sea surface temperature anomalies (SSTA) in the Western North Pacific (WNP), and its impact on enhancing ENSO prediction accuracy. Our analysis reveals that integrating WNP SSTA with established XAI techniques significantly increases the predictability of ENSO states. We found marked improvement in prediction accuracy, from a 60 % baseline to over 85 % for forecasting moderate warm, cold, and neutral ENSO states one year ahead. For higher magnitude events, precision surpasses 90 %. This work, intended as a follow-up to recent studies, underscores the potential of augmenting emerging XAI with additional SST signals to advance long-term climate forecasting capabilities.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102431"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI in lengthening ENSO prediction from western north pacific precursor\",\"authors\":\"Liping Deng ,&nbsp;Krishna Borhara ,&nbsp;Parichart Promchote ,&nbsp;Shih-Yu Wang\",\"doi\":\"10.1016/j.ocemod.2024.102431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this short communication, we report initial success in utilizing existing Explainable Artificial Intelligence (XAI) methodology to investigate an emerging precursor of the El Niño-Southern Oscillation (ENSO), manifest as sea surface temperature anomalies (SSTA) in the Western North Pacific (WNP), and its impact on enhancing ENSO prediction accuracy. Our analysis reveals that integrating WNP SSTA with established XAI techniques significantly increases the predictability of ENSO states. We found marked improvement in prediction accuracy, from a 60 % baseline to over 85 % for forecasting moderate warm, cold, and neutral ENSO states one year ahead. For higher magnitude events, precision surpasses 90 %. This work, intended as a follow-up to recent studies, underscores the potential of augmenting emerging XAI with additional SST signals to advance long-term climate forecasting capabilities.</p></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"192 \",\"pages\":\"Article 102431\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500324001185\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001185","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们报告了利用现有的可解释人工智能(XAI)方法研究厄尔尼诺-南方涛动(ENSO)新出现的前兆(表现为北太平洋西部(WNP)的海面温度异常(SSTA))及其对提高 ENSO 预测准确性的影响所取得的初步成功。我们的分析表明,将 WNP SSTA 与成熟的 XAI 技术相结合可显著提高 ENSO 状态的可预测性。我们发现预测准确率有了明显提高,在预测一年前的中度暖、冷和中性厄尔尼诺/南方涛动状态时,预测准确率从 60% 的基线提高到 85% 以上。对于更大规模的事件,预测精度超过了 90%。这项工作是近期研究的后续,它强调了利用额外的 SST 信号增强新兴 XAI 的潜力,以提高长期气候预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable AI in lengthening ENSO prediction from western north pacific precursor

In this short communication, we report initial success in utilizing existing Explainable Artificial Intelligence (XAI) methodology to investigate an emerging precursor of the El Niño-Southern Oscillation (ENSO), manifest as sea surface temperature anomalies (SSTA) in the Western North Pacific (WNP), and its impact on enhancing ENSO prediction accuracy. Our analysis reveals that integrating WNP SSTA with established XAI techniques significantly increases the predictability of ENSO states. We found marked improvement in prediction accuracy, from a 60 % baseline to over 85 % for forecasting moderate warm, cold, and neutral ENSO states one year ahead. For higher magnitude events, precision surpasses 90 %. This work, intended as a follow-up to recent studies, underscores the potential of augmenting emerging XAI with additional SST signals to advance long-term climate forecasting capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信