Zhiyuan Ma , Jiwei Yang , Haoyang Shen , Tianzhi Qi , Li Lin
{"title":"利用开发的超声波反射相位导数谱识别粗糙和弱粘接界面的界面刚度","authors":"Zhiyuan Ma , Jiwei Yang , Haoyang Shen , Tianzhi Qi , Li Lin","doi":"10.1016/j.ndteint.2024.103236","DOIUrl":null,"url":null,"abstract":"<div><p>The thickness and interface roughness of coatings both affect the interface bonded quality. Existed ultrasonic testing methods based on traditional phase screen approximation or spring model assumption are difficult to simultaneously identify the interface roughness and stiffness of coating. This paper, a new method for integrated identifying coating thickness, interface roughness, and interface stiffness using developed ultrasonic reflection phase derivative spectrum (URPDS) is proposed. A phase-screen-approximated spring-model (PSASM) for ultrasound vertically propagating into rough and weak bonded interface is constructed. On basis of PSASM, a URPDS of coating/substrate structure is developed for identifying the interface stiffness and other parameters of coated parts. Cross-correlation analysis is used to eliminate the phase deviation of URPDS introduced by reference signal and initial phase of tested signal. Sensitivity analysis is used to determine the high-sensitivity regions of URPDS to interface roughness and interface stiffness. Genetic algorithm optimization is used to achieve integrated identification of coating thickness, interface roughness, and interface stiffness. The rationality of PSASM is verified through numerical simulation using a series of coating/substrate models with rough and weak bonded interface, and the relationship between the high-sensitivity regions and the high-precision measurement ranges of interface roughness <em>Rq</em> and interface stiffness <em>K</em><sub>n</sub> is clarified. Ultrasonic experiments are implemented on Nickel-coating samples and coated parts using plane wave probe. The coating thickness, interface roughness, and interface stiffness could be identified accurately, which shows that the proposed URPDS method can identify the interface stiffness of rough contacted dissimilar media or coated parts with rough interface.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103236"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface stiffness identification of rough and weak bonded interface using developed ultrasonic reflection phase derivative spectrum\",\"authors\":\"Zhiyuan Ma , Jiwei Yang , Haoyang Shen , Tianzhi Qi , Li Lin\",\"doi\":\"10.1016/j.ndteint.2024.103236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thickness and interface roughness of coatings both affect the interface bonded quality. Existed ultrasonic testing methods based on traditional phase screen approximation or spring model assumption are difficult to simultaneously identify the interface roughness and stiffness of coating. This paper, a new method for integrated identifying coating thickness, interface roughness, and interface stiffness using developed ultrasonic reflection phase derivative spectrum (URPDS) is proposed. A phase-screen-approximated spring-model (PSASM) for ultrasound vertically propagating into rough and weak bonded interface is constructed. On basis of PSASM, a URPDS of coating/substrate structure is developed for identifying the interface stiffness and other parameters of coated parts. Cross-correlation analysis is used to eliminate the phase deviation of URPDS introduced by reference signal and initial phase of tested signal. Sensitivity analysis is used to determine the high-sensitivity regions of URPDS to interface roughness and interface stiffness. Genetic algorithm optimization is used to achieve integrated identification of coating thickness, interface roughness, and interface stiffness. The rationality of PSASM is verified through numerical simulation using a series of coating/substrate models with rough and weak bonded interface, and the relationship between the high-sensitivity regions and the high-precision measurement ranges of interface roughness <em>Rq</em> and interface stiffness <em>K</em><sub>n</sub> is clarified. Ultrasonic experiments are implemented on Nickel-coating samples and coated parts using plane wave probe. The coating thickness, interface roughness, and interface stiffness could be identified accurately, which shows that the proposed URPDS method can identify the interface stiffness of rough contacted dissimilar media or coated parts with rough interface.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"148 \",\"pages\":\"Article 103236\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002019\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002019","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Interface stiffness identification of rough and weak bonded interface using developed ultrasonic reflection phase derivative spectrum
The thickness and interface roughness of coatings both affect the interface bonded quality. Existed ultrasonic testing methods based on traditional phase screen approximation or spring model assumption are difficult to simultaneously identify the interface roughness and stiffness of coating. This paper, a new method for integrated identifying coating thickness, interface roughness, and interface stiffness using developed ultrasonic reflection phase derivative spectrum (URPDS) is proposed. A phase-screen-approximated spring-model (PSASM) for ultrasound vertically propagating into rough and weak bonded interface is constructed. On basis of PSASM, a URPDS of coating/substrate structure is developed for identifying the interface stiffness and other parameters of coated parts. Cross-correlation analysis is used to eliminate the phase deviation of URPDS introduced by reference signal and initial phase of tested signal. Sensitivity analysis is used to determine the high-sensitivity regions of URPDS to interface roughness and interface stiffness. Genetic algorithm optimization is used to achieve integrated identification of coating thickness, interface roughness, and interface stiffness. The rationality of PSASM is verified through numerical simulation using a series of coating/substrate models with rough and weak bonded interface, and the relationship between the high-sensitivity regions and the high-precision measurement ranges of interface roughness Rq and interface stiffness Kn is clarified. Ultrasonic experiments are implemented on Nickel-coating samples and coated parts using plane wave probe. The coating thickness, interface roughness, and interface stiffness could be identified accurately, which shows that the proposed URPDS method can identify the interface stiffness of rough contacted dissimilar media or coated parts with rough interface.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.