{"title":"连续假媒体检测:让深度假货检测器适应新的生成技术","authors":"Francesco Tassone , Luca Maiano , Irene Amerini","doi":"10.1016/j.cviu.2024.104143","DOIUrl":null,"url":null,"abstract":"<div><p>Generative techniques continue to evolve at an impressively high rate, driven by the hype about these technologies. This rapid advancement severely limits the application of deepfake detectors, which, despite numerous efforts by the scientific community, struggle to achieve sufficiently robust performance against the ever-changing content. To address these limitations, in this paper, we propose an analysis of two continuous learning techniques on a <em>Short</em> and a <em>Long</em> sequence of fake media. Both sequences include a complex and heterogeneous range of deepfakes (generated images and videos) from GANs, computer graphics techniques, and unknown sources. Our experiments show that continual learning could be important in mitigating the need for generalizability. In fact, we show that, although with some limitations, continual learning methods help to maintain good performance across the entire training sequence. For these techniques to work in a sufficiently robust way, however, it is necessary that the tasks in the sequence share similarities. In fact, according to our experiments, the order and similarity of the tasks can affect the performance of the models over time. To address this problem, we show that it is possible to group tasks based on their similarity. This small measure allows for a significant improvement even in longer sequences. This result suggests that continual techniques can be combined with the most promising detection methods, allowing them to catch up with the latest generative techniques. In addition to this, we propose an overview of how this learning approach can be integrated into a deepfake detection pipeline for continuous integration and continuous deployment (CI/CD). This allows you to keep track of different funds, such as social networks, new generative tools, or third-party datasets, and through the integration of continuous learning, allows constant maintenance of the detectors.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077314224002248/pdfft?md5=055418833f110c748b5c22d95d3c42b9&pid=1-s2.0-S1077314224002248-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Continuous fake media detection: Adapting deepfake detectors to new generative techniques\",\"authors\":\"Francesco Tassone , Luca Maiano , Irene Amerini\",\"doi\":\"10.1016/j.cviu.2024.104143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generative techniques continue to evolve at an impressively high rate, driven by the hype about these technologies. This rapid advancement severely limits the application of deepfake detectors, which, despite numerous efforts by the scientific community, struggle to achieve sufficiently robust performance against the ever-changing content. To address these limitations, in this paper, we propose an analysis of two continuous learning techniques on a <em>Short</em> and a <em>Long</em> sequence of fake media. Both sequences include a complex and heterogeneous range of deepfakes (generated images and videos) from GANs, computer graphics techniques, and unknown sources. Our experiments show that continual learning could be important in mitigating the need for generalizability. In fact, we show that, although with some limitations, continual learning methods help to maintain good performance across the entire training sequence. For these techniques to work in a sufficiently robust way, however, it is necessary that the tasks in the sequence share similarities. In fact, according to our experiments, the order and similarity of the tasks can affect the performance of the models over time. To address this problem, we show that it is possible to group tasks based on their similarity. This small measure allows for a significant improvement even in longer sequences. This result suggests that continual techniques can be combined with the most promising detection methods, allowing them to catch up with the latest generative techniques. In addition to this, we propose an overview of how this learning approach can be integrated into a deepfake detection pipeline for continuous integration and continuous deployment (CI/CD). This allows you to keep track of different funds, such as social networks, new generative tools, or third-party datasets, and through the integration of continuous learning, allows constant maintenance of the detectors.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002248/pdfft?md5=055418833f110c748b5c22d95d3c42b9&pid=1-s2.0-S1077314224002248-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002248\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002248","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continuous fake media detection: Adapting deepfake detectors to new generative techniques
Generative techniques continue to evolve at an impressively high rate, driven by the hype about these technologies. This rapid advancement severely limits the application of deepfake detectors, which, despite numerous efforts by the scientific community, struggle to achieve sufficiently robust performance against the ever-changing content. To address these limitations, in this paper, we propose an analysis of two continuous learning techniques on a Short and a Long sequence of fake media. Both sequences include a complex and heterogeneous range of deepfakes (generated images and videos) from GANs, computer graphics techniques, and unknown sources. Our experiments show that continual learning could be important in mitigating the need for generalizability. In fact, we show that, although with some limitations, continual learning methods help to maintain good performance across the entire training sequence. For these techniques to work in a sufficiently robust way, however, it is necessary that the tasks in the sequence share similarities. In fact, according to our experiments, the order and similarity of the tasks can affect the performance of the models over time. To address this problem, we show that it is possible to group tasks based on their similarity. This small measure allows for a significant improvement even in longer sequences. This result suggests that continual techniques can be combined with the most promising detection methods, allowing them to catch up with the latest generative techniques. In addition to this, we propose an overview of how this learning approach can be integrated into a deepfake detection pipeline for continuous integration and continuous deployment (CI/CD). This allows you to keep track of different funds, such as social networks, new generative tools, or third-party datasets, and through the integration of continuous learning, allows constant maintenance of the detectors.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems