生物启发的 MXene 膜用于增强水包油型乳液的分离和防污:SHAP 可解释性 ML

Nadeem Baig , Sani I. Abba , Jamil Usman , Ibrahim Muhammad , Ismail Abdulazeez , A.G. Usman , Isam H. Aljundi
{"title":"生物启发的 MXene 膜用于增强水包油型乳液的分离和防污:SHAP 可解释性 ML","authors":"Nadeem Baig ,&nbsp;Sani I. Abba ,&nbsp;Jamil Usman ,&nbsp;Ibrahim Muhammad ,&nbsp;Ismail Abdulazeez ,&nbsp;A.G. Usman ,&nbsp;Isam H. Aljundi","doi":"10.1016/j.clwat.2024.100041","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing membrane performance for efficient water treatment is crucial for sustainable development and environmental protection, aligning with UN SDGs. This study involves experimental design, statistical reliability of small data, and explainable machine learning (ML) using SHAP (Shapley Additive Explanations). The research uses ML models and statistical tests to ensure data reliability and stationarity and investigate various membranes’ fouling and separation efficiency (MX-CM, PDMX-CM, and SPDMX-CM). Stationarity tests, including the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests, revealed that MX-CM is stationary at level (I(0)), while PDMX-CM and SPDMX-CM required first differencing (I(1)) to achieve stationarity. SHAP analysis showed that in the fouling study, higher values of PDMX-CM and MX-CM positively influenced model predictions, with SHAP values of +0.09 for Cycle, −0.06 for PDMX-CM, and −0.06 for MX-CM. In the separation efficiency study, Cycle had a neutral impact (0.00), PDMX-CM had a slight positive effect, and MX-CM had a slight negative impact. These findings highlight the importance of ensuring data stationarity and utilizing SHAP for model explainability in predicting membrane performance. Accurate preprocessing and model interpretation enhance decision-making and optimization in membrane fouling and separation efficiency studies, ensuring robust and reliable ML models.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"2 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000395/pdfft?md5=059942ff5b23cfade4e6d95ffdbca46b&pid=1-s2.0-S2950263224000395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired MXene membranes for enhanced separation and anti-fouling in oil-in-water emulsions: SHAP explainability ML\",\"authors\":\"Nadeem Baig ,&nbsp;Sani I. Abba ,&nbsp;Jamil Usman ,&nbsp;Ibrahim Muhammad ,&nbsp;Ismail Abdulazeez ,&nbsp;A.G. Usman ,&nbsp;Isam H. Aljundi\",\"doi\":\"10.1016/j.clwat.2024.100041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing membrane performance for efficient water treatment is crucial for sustainable development and environmental protection, aligning with UN SDGs. This study involves experimental design, statistical reliability of small data, and explainable machine learning (ML) using SHAP (Shapley Additive Explanations). The research uses ML models and statistical tests to ensure data reliability and stationarity and investigate various membranes’ fouling and separation efficiency (MX-CM, PDMX-CM, and SPDMX-CM). Stationarity tests, including the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests, revealed that MX-CM is stationary at level (I(0)), while PDMX-CM and SPDMX-CM required first differencing (I(1)) to achieve stationarity. SHAP analysis showed that in the fouling study, higher values of PDMX-CM and MX-CM positively influenced model predictions, with SHAP values of +0.09 for Cycle, −0.06 for PDMX-CM, and −0.06 for MX-CM. In the separation efficiency study, Cycle had a neutral impact (0.00), PDMX-CM had a slight positive effect, and MX-CM had a slight negative impact. These findings highlight the importance of ensuring data stationarity and utilizing SHAP for model explainability in predicting membrane performance. Accurate preprocessing and model interpretation enhance decision-making and optimization in membrane fouling and separation efficiency studies, ensuring robust and reliable ML models.</p></div>\",\"PeriodicalId\":100257,\"journal\":{\"name\":\"Cleaner Water\",\"volume\":\"2 \",\"pages\":\"Article 100041\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950263224000395/pdfft?md5=059942ff5b23cfade4e6d95ffdbca46b&pid=1-s2.0-S2950263224000395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950263224000395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263224000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化膜性能以实现高效水处理对于可持续发展和环境保护至关重要,这与联合国可持续发展目标是一致的。本研究涉及实验设计、小数据的统计可靠性以及使用 SHAP(Shapley Additive Explanations)的可解释机器学习(ML)。研究使用 ML 模型和统计检验来确保数据的可靠性和静态性,并研究各种膜(MX-CM、PDMX-CM 和 SPDMX-CM)的污垢和分离效率。静态检验,包括 Augmented Dickey-Fuller (ADF) 和 Phillips-Perron (PP) 检验表明,MX-CM 在水平(I(0))上是静态的,而 PDMX-CM 和 SPDMX-CM 则需要第一次差分(I(1))才能达到静态。SHAP 分析表明,在污垢研究中,PDMX-CM 和 MX-CM 的较高值会对模型预测产生积极影响,Cycle 的 SHAP 值为 +0.09,PDMX-CM 为 -0.06,MX-CM 为 -0.06。在分离效率研究中,Cycle 的影响为中性(0.00),PDMX-CM 有轻微的正面影响,而 MX-CM 则有轻微的负面影响。这些发现强调了在预测膜性能时确保数据固定性和利用 SHAP 模型可解释性的重要性。准确的预处理和模型解释可增强膜污垢和分离效率研究中的决策和优化,确保建立稳健可靠的 ML 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired MXene membranes for enhanced separation and anti-fouling in oil-in-water emulsions: SHAP explainability ML

Optimizing membrane performance for efficient water treatment is crucial for sustainable development and environmental protection, aligning with UN SDGs. This study involves experimental design, statistical reliability of small data, and explainable machine learning (ML) using SHAP (Shapley Additive Explanations). The research uses ML models and statistical tests to ensure data reliability and stationarity and investigate various membranes’ fouling and separation efficiency (MX-CM, PDMX-CM, and SPDMX-CM). Stationarity tests, including the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests, revealed that MX-CM is stationary at level (I(0)), while PDMX-CM and SPDMX-CM required first differencing (I(1)) to achieve stationarity. SHAP analysis showed that in the fouling study, higher values of PDMX-CM and MX-CM positively influenced model predictions, with SHAP values of +0.09 for Cycle, −0.06 for PDMX-CM, and −0.06 for MX-CM. In the separation efficiency study, Cycle had a neutral impact (0.00), PDMX-CM had a slight positive effect, and MX-CM had a slight negative impact. These findings highlight the importance of ensuring data stationarity and utilizing SHAP for model explainability in predicting membrane performance. Accurate preprocessing and model interpretation enhance decision-making and optimization in membrane fouling and separation efficiency studies, ensuring robust and reliable ML models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信