将半固体制剂用于光动力疗法的进展和前景

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Daniel Ziental , Beata Czarczynska-Goslinska , Marcin Wysocki , Marcin Ptaszek , Łukasz Sobotta
{"title":"将半固体制剂用于光动力疗法的进展和前景","authors":"Daniel Ziental ,&nbsp;Beata Czarczynska-Goslinska ,&nbsp;Marcin Wysocki ,&nbsp;Marcin Ptaszek ,&nbsp;Łukasz Sobotta","doi":"10.1016/j.ejpb.2024.114485","DOIUrl":null,"url":null,"abstract":"<div><p>Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114485"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124003114/pdfft?md5=c72e19980532407062469c8f8726084e&pid=1-s2.0-S0939641124003114-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances and perspectives in use of semisolid formulations for photodynamic methods\",\"authors\":\"Daniel Ziental ,&nbsp;Beata Czarczynska-Goslinska ,&nbsp;Marcin Wysocki ,&nbsp;Marcin Ptaszek ,&nbsp;Łukasz Sobotta\",\"doi\":\"10.1016/j.ejpb.2024.114485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"204 \",\"pages\":\"Article 114485\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003114/pdfft?md5=c72e19980532407062469c8f8726084e&pid=1-s2.0-S0939641124003114-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124003114\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

尽管自第一种用于光动力疗法的光敏剂获得临床批准以来已过去了近 30 年,但新药物制剂的开发进展仍不尽如人意。本综述强调,尽管经过多年的研究,许多反复出现的挑战和问题仍未得到解决。本文分析了涉及氨基乙酰丙酸及其衍生物以及其他有可能开发为医药产品的光敏剂的部分重要研究。在各种可能的载体中,特别关注明胶、藻酸盐、聚环氧乙烷、聚丙烯酸和壳聚糖。重点尤其放在传染病和癌症上。开发新的半固体药物制剂的主要方面应优先考虑生产易于制造和生物相容性好的制剂,以供临床使用。同时,新制剂应保留光敏剂的主要功能,即产生能够破坏致病细胞或肿瘤的活性氧。此外,还要强调载体的辅助特性,因为它可以增强大环的功效,尤其是在基于壳聚糖的抗菌配方中。目前的研究表明,许多在光动力疗法中具有很高光敏剂潜力的染料和大环化合物在配方和开发工作中仍未得到开发。本综述概述了推进光敏剂作为活性药物成分 (API) 的潜在新途径和以前探索过的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advances and perspectives in use of semisolid formulations for photodynamic methods

Advances and perspectives in use of semisolid formulations for photodynamic methods

Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信