Rui-Lan Liu , Yifan Chen , Xiao Su , Wenping Zhu , Zengchen Liu , Yahong Chen , Dan-Yang Wang , Gang Li
{"title":"质子传导性聚氧化金属酸盐","authors":"Rui-Lan Liu , Yifan Chen , Xiao Su , Wenping Zhu , Zengchen Liu , Yahong Chen , Dan-Yang Wang , Gang Li","doi":"10.1016/j.ccr.2024.216224","DOIUrl":null,"url":null,"abstract":"<div><p>Polyoxometalates (POMs), also known as transition metal‑oxygen clusters deliver unique physical and chemical properties such as low effective surface charge density, high thermal stability, and multi-electron acceptance, making them suitable for proton conductors. In recent years, proton conductive POMs have achieved significant progress in high performance (>10<sup>−2</sup> S/cm) comparable to conventional materials through structural regulation strategies. At the same time, the veiled conduction mechanism has been elucidated by structural analysis and characterization. In this review, the research of POMs (Keggin-type, Dawson-type, composite materials) in proton conduction is reviewed mainly from the design strategy, proton conductivity and mechanism, structure-function relationship, and application, finally with a detailed discussion of challenges and prospects. This review will provide more inspiration for exploring and applying proton-conducting POM materials.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"522 ","pages":"Article 216224"},"PeriodicalIF":20.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton conductive polyoxometalates\",\"authors\":\"Rui-Lan Liu , Yifan Chen , Xiao Su , Wenping Zhu , Zengchen Liu , Yahong Chen , Dan-Yang Wang , Gang Li\",\"doi\":\"10.1016/j.ccr.2024.216224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyoxometalates (POMs), also known as transition metal‑oxygen clusters deliver unique physical and chemical properties such as low effective surface charge density, high thermal stability, and multi-electron acceptance, making them suitable for proton conductors. In recent years, proton conductive POMs have achieved significant progress in high performance (>10<sup>−2</sup> S/cm) comparable to conventional materials through structural regulation strategies. At the same time, the veiled conduction mechanism has been elucidated by structural analysis and characterization. In this review, the research of POMs (Keggin-type, Dawson-type, composite materials) in proton conduction is reviewed mainly from the design strategy, proton conductivity and mechanism, structure-function relationship, and application, finally with a detailed discussion of challenges and prospects. This review will provide more inspiration for exploring and applying proton-conducting POM materials.</p></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"522 \",\"pages\":\"Article 216224\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524005708\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005708","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Polyoxometalates (POMs), also known as transition metal‑oxygen clusters deliver unique physical and chemical properties such as low effective surface charge density, high thermal stability, and multi-electron acceptance, making them suitable for proton conductors. In recent years, proton conductive POMs have achieved significant progress in high performance (>10−2 S/cm) comparable to conventional materials through structural regulation strategies. At the same time, the veiled conduction mechanism has been elucidated by structural analysis and characterization. In this review, the research of POMs (Keggin-type, Dawson-type, composite materials) in proton conduction is reviewed mainly from the design strategy, proton conductivity and mechanism, structure-function relationship, and application, finally with a detailed discussion of challenges and prospects. This review will provide more inspiration for exploring and applying proton-conducting POM materials.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.