{"title":"用于观察材料内部机械特性分布的三维压痕测试系统","authors":"Daisuke Hirooka, Naomichi Furushiro, Tomomi Yamaguchi","doi":"10.1016/j.precisioneng.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the development of a three-dimensional (3D) indentation test system capable of observing the distribution of mechanical properties in structural materials. Serial sectioning with destructive treatment has traditionally been used as a method for observing microstructure within materials in three dimensions. The serial sectioning methods using precision cutting has attracted particular attention as it enables the observation of large sample volumes. However, those methods can only observe the microstructure as image, not the mechanical properties such as hardness and elastic modulus. To measure the 3D distribution of the mechanical properties of the material, it is effective to combine repeated cutting and indentation tests on each cutting surface. Morever, combining the image observation and mechanical property tests could allow a more sophisticated analysis of the interior of material. To implement this method, we have constructed an indentation test system on a precision machine using a Berkovich indenter, micro-force sensor, and micro-movement stage.</p><p>In order to achieve a 3D indentation test, it is considered necessary to unify the measurement positions in the depth direction. Furthermore, the unloading rate needs to be controlled in order to carry out stable indentation tests. Therefore, we propose a method of 3D indentation test that can precisely control the maximum depth of indentation and unloading speed.</p><p>In this paper, we devise a method for driving the constructed system and a method for obtaining data and confirm the accuracy of these methods by experiment. In addition, we determine indentation depth and unloading speed which are suitable for our method by performing indentation tests on a block for ultra-microhardness. Finally, we practice 3D indentation test in which the cutting and indentation tests are repeated on specimens with different mechanical properties in the depth direction. Experimental results show that our indentation test system is appropriate to measure three-dimensional mechanical properties inside the material.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 143-154"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141635924002058/pdfft?md5=4e2ab0ff42e88433cb544b5e12b6d812&pid=1-s2.0-S0141635924002058-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional indentation test system for observing the distribution of internal mechanical properties in materials\",\"authors\":\"Daisuke Hirooka, Naomichi Furushiro, Tomomi Yamaguchi\",\"doi\":\"10.1016/j.precisioneng.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes the development of a three-dimensional (3D) indentation test system capable of observing the distribution of mechanical properties in structural materials. Serial sectioning with destructive treatment has traditionally been used as a method for observing microstructure within materials in three dimensions. The serial sectioning methods using precision cutting has attracted particular attention as it enables the observation of large sample volumes. However, those methods can only observe the microstructure as image, not the mechanical properties such as hardness and elastic modulus. To measure the 3D distribution of the mechanical properties of the material, it is effective to combine repeated cutting and indentation tests on each cutting surface. Morever, combining the image observation and mechanical property tests could allow a more sophisticated analysis of the interior of material. To implement this method, we have constructed an indentation test system on a precision machine using a Berkovich indenter, micro-force sensor, and micro-movement stage.</p><p>In order to achieve a 3D indentation test, it is considered necessary to unify the measurement positions in the depth direction. Furthermore, the unloading rate needs to be controlled in order to carry out stable indentation tests. Therefore, we propose a method of 3D indentation test that can precisely control the maximum depth of indentation and unloading speed.</p><p>In this paper, we devise a method for driving the constructed system and a method for obtaining data and confirm the accuracy of these methods by experiment. In addition, we determine indentation depth and unloading speed which are suitable for our method by performing indentation tests on a block for ultra-microhardness. Finally, we practice 3D indentation test in which the cutting and indentation tests are repeated on specimens with different mechanical properties in the depth direction. Experimental results show that our indentation test system is appropriate to measure three-dimensional mechanical properties inside the material.</p></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 143-154\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002058/pdfft?md5=4e2ab0ff42e88433cb544b5e12b6d812&pid=1-s2.0-S0141635924002058-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002058\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002058","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Three-dimensional indentation test system for observing the distribution of internal mechanical properties in materials
This paper describes the development of a three-dimensional (3D) indentation test system capable of observing the distribution of mechanical properties in structural materials. Serial sectioning with destructive treatment has traditionally been used as a method for observing microstructure within materials in three dimensions. The serial sectioning methods using precision cutting has attracted particular attention as it enables the observation of large sample volumes. However, those methods can only observe the microstructure as image, not the mechanical properties such as hardness and elastic modulus. To measure the 3D distribution of the mechanical properties of the material, it is effective to combine repeated cutting and indentation tests on each cutting surface. Morever, combining the image observation and mechanical property tests could allow a more sophisticated analysis of the interior of material. To implement this method, we have constructed an indentation test system on a precision machine using a Berkovich indenter, micro-force sensor, and micro-movement stage.
In order to achieve a 3D indentation test, it is considered necessary to unify the measurement positions in the depth direction. Furthermore, the unloading rate needs to be controlled in order to carry out stable indentation tests. Therefore, we propose a method of 3D indentation test that can precisely control the maximum depth of indentation and unloading speed.
In this paper, we devise a method for driving the constructed system and a method for obtaining data and confirm the accuracy of these methods by experiment. In addition, we determine indentation depth and unloading speed which are suitable for our method by performing indentation tests on a block for ultra-microhardness. Finally, we practice 3D indentation test in which the cutting and indentation tests are repeated on specimens with different mechanical properties in the depth direction. Experimental results show that our indentation test system is appropriate to measure three-dimensional mechanical properties inside the material.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.