随机环境中分支过程的中心极限定理精确收敛率和多项式收敛率

Pub Date : 2024-09-10 DOI:10.1016/j.spl.2024.110268
Yingqiu Li , Xin Zhang , Zhan Lu , Sheng Xiao
{"title":"随机环境中分支过程的中心极限定理精确收敛率和多项式收敛率","authors":"Yingqiu Li ,&nbsp;Xin Zhang ,&nbsp;Zhan Lu ,&nbsp;Sheng Xiao","doi":"10.1016/j.spl.2024.110268","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> be a supercritical branching process in an independent and identically distributed (i.i.d.) random environment. The paper studies the properties of the estimator <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> introduced by Dion and Esty in 1979. We introduce a related martingale and discuss its convergence and exponential convergence rate. On this basis the exact convergence rate of the central limit theorem for normalized <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is given.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002372/pdfft?md5=220bf7e97e493e929a1b6a021826f150&pid=1-s2.0-S0167715224002372-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exact convergence rate of the central limit theorem and polynomial convergence rate for branching processes in a random environment\",\"authors\":\"Yingqiu Li ,&nbsp;Xin Zhang ,&nbsp;Zhan Lu ,&nbsp;Sheng Xiao\",\"doi\":\"10.1016/j.spl.2024.110268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></math></span> be a supercritical branching process in an independent and identically distributed (i.i.d.) random environment. The paper studies the properties of the estimator <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> introduced by Dion and Esty in 1979. We introduce a related martingale and discuss its convergence and exponential convergence rate. On this basis the exact convergence rate of the central limit theorem for normalized <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is given.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002372/pdfft?md5=220bf7e97e493e929a1b6a021826f150&pid=1-s2.0-S0167715224002372-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 (Zn) 是独立且同分布(i.i.d. )随机环境中的超临界分支过程。本文研究了 Dion 和 Esty 于 1979 年提出的估计器 Mn=n-1∑k=0n-1(Zk+1/Zk) 的性质。我们引入了一个相关的鞅,并讨论了它的收敛性和指数收敛率。在此基础上,给出了归一化 Mn 的中心极限定理的精确收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Exact convergence rate of the central limit theorem and polynomial convergence rate for branching processes in a random environment

Let (Zn) be a supercritical branching process in an independent and identically distributed (i.i.d.) random environment. The paper studies the properties of the estimator Mn=n1k=0n1(Zk+1/Zk) introduced by Dion and Esty in 1979. We introduce a related martingale and discuss its convergence and exponential convergence rate. On this basis the exact convergence rate of the central limit theorem for normalized Mn is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信