Amrit Kumar Mondal , Avinash Kumar Chaurasiya , Kilian D. Stenning , Alex Vanstone , Jack C. Gartside , Will R. Branford , Anjan Barman
{"title":"人工自旋冰中磁性微态的布里渊光散射光谱指纹图谱","authors":"Amrit Kumar Mondal , Avinash Kumar Chaurasiya , Kilian D. Stenning , Alex Vanstone , Jack C. Gartside , Will R. Branford , Anjan Barman","doi":"10.1016/j.nantod.2024.102497","DOIUrl":null,"url":null,"abstract":"<div><p>The family of nanomagnetic arrays termed artificial spin ice (ASI) possess a vast range of metastable microstates. These states exhibit both exotic fundamental physics and more recently applied functionality, garnering attention as reconfigurable magnonic circuits and neuromorphic computing platforms. However, open questions remain on the role of microstate imperfections or angular disorder – particularly in the GHz response of the system. We report a study on the GHz dynamics of a series of five carefully prepared microstates in the same ASI sample, with both coexistence of vortex and uniformly magnetized macrospins, and disorder in the orientation of the macrospins at different vertices. We observe microstate-specific mode frequency shifting, mode creation and mode crossing. This versatility of characteristic spin-wave (SW) peaks for specific magnetic microstates in ASI enables identification of microstate configurations via SW spectral characterization. The wide reconfigurability of microstate-specific SW dynamics also opens avenues for developing rich magnonic devices operating in the GHz frequency regime and advances the understanding of ASI physics.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102497"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brillouin light scattering spectral fingerprinting of magnetic microstates in artificial spin ice\",\"authors\":\"Amrit Kumar Mondal , Avinash Kumar Chaurasiya , Kilian D. Stenning , Alex Vanstone , Jack C. Gartside , Will R. Branford , Anjan Barman\",\"doi\":\"10.1016/j.nantod.2024.102497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The family of nanomagnetic arrays termed artificial spin ice (ASI) possess a vast range of metastable microstates. These states exhibit both exotic fundamental physics and more recently applied functionality, garnering attention as reconfigurable magnonic circuits and neuromorphic computing platforms. However, open questions remain on the role of microstate imperfections or angular disorder – particularly in the GHz response of the system. We report a study on the GHz dynamics of a series of five carefully prepared microstates in the same ASI sample, with both coexistence of vortex and uniformly magnetized macrospins, and disorder in the orientation of the macrospins at different vertices. We observe microstate-specific mode frequency shifting, mode creation and mode crossing. This versatility of characteristic spin-wave (SW) peaks for specific magnetic microstates in ASI enables identification of microstate configurations via SW spectral characterization. The wide reconfigurability of microstate-specific SW dynamics also opens avenues for developing rich magnonic devices operating in the GHz frequency regime and advances the understanding of ASI physics.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"59 \",\"pages\":\"Article 102497\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003530\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Brillouin light scattering spectral fingerprinting of magnetic microstates in artificial spin ice
The family of nanomagnetic arrays termed artificial spin ice (ASI) possess a vast range of metastable microstates. These states exhibit both exotic fundamental physics and more recently applied functionality, garnering attention as reconfigurable magnonic circuits and neuromorphic computing platforms. However, open questions remain on the role of microstate imperfections or angular disorder – particularly in the GHz response of the system. We report a study on the GHz dynamics of a series of five carefully prepared microstates in the same ASI sample, with both coexistence of vortex and uniformly magnetized macrospins, and disorder in the orientation of the macrospins at different vertices. We observe microstate-specific mode frequency shifting, mode creation and mode crossing. This versatility of characteristic spin-wave (SW) peaks for specific magnetic microstates in ASI enables identification of microstate configurations via SW spectral characterization. The wide reconfigurability of microstate-specific SW dynamics also opens avenues for developing rich magnonic devices operating in the GHz frequency regime and advances the understanding of ASI physics.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.