Jose Luis Sanchez-Jimenez , Rosa M. Cibrian-Ortiz de Anda , Maria Vazquez-Fariñas , Soraya Martin-Manjarres , Jose Ignacio Priego-Quesada , Inmaculada Aparicio-Aparicio
{"title":"在适温环境下进行分级运动测试时,脊髓损伤对不同相关区域皮肤温度的影响","authors":"Jose Luis Sanchez-Jimenez , Rosa M. Cibrian-Ortiz de Anda , Maria Vazquez-Fariñas , Soraya Martin-Manjarres , Jose Ignacio Priego-Quesada , Inmaculada Aparicio-Aparicio","doi":"10.1016/j.jtherbio.2024.103969","DOIUrl":null,"url":null,"abstract":"<div><p>The gradient between core and skin temperature is a relevant factor in heat exchange between the human body and the environment, but people with spinal cord injury (SCI), due to their autonomic dysfunction, have impaired mechanisms that condition skin temperature response. This study aimed to determine how SCI affects skin temperature response in different ROIs during a graded exercise test in a moderate temperature environment. 32 participants were included in the study [SCI (N = 16); Non-SCI (N = 16)]. A graded exercise test was conducted on an arm crank ergometer, with a staged duration of 3 min separated by 1 min of rest. Skin temperature was measured using infrared thermography at rest, after each interval and during recovery. Individuals with SCI exhibited lower skin temperature in the anterior leg during exercise than Non-SCI (p < 0.001). During recovery, SCI athletes experienced a lower skin temperature restoration in the anterior arm, posterior arm and anterior leg (p < 0.05). The anterior leg is an interesting region to measure during exercise in people with SCI for assessing the physiological effect of the injury, probably for the autonomic dysfunction in skin temperature regulation, but the effect observed during recovery in the arms suggests the presence of different mechanisms involved in skin temperature regulation.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 103969"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001876/pdfft?md5=0248fada9bb150aebb32c1c4ea16661e&pid=1-s2.0-S0306456524001876-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of spinal cord injury on the skin temperature of different regions of interest during a graded exercise test in a moderate temperature environment\",\"authors\":\"Jose Luis Sanchez-Jimenez , Rosa M. Cibrian-Ortiz de Anda , Maria Vazquez-Fariñas , Soraya Martin-Manjarres , Jose Ignacio Priego-Quesada , Inmaculada Aparicio-Aparicio\",\"doi\":\"10.1016/j.jtherbio.2024.103969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gradient between core and skin temperature is a relevant factor in heat exchange between the human body and the environment, but people with spinal cord injury (SCI), due to their autonomic dysfunction, have impaired mechanisms that condition skin temperature response. This study aimed to determine how SCI affects skin temperature response in different ROIs during a graded exercise test in a moderate temperature environment. 32 participants were included in the study [SCI (N = 16); Non-SCI (N = 16)]. A graded exercise test was conducted on an arm crank ergometer, with a staged duration of 3 min separated by 1 min of rest. Skin temperature was measured using infrared thermography at rest, after each interval and during recovery. Individuals with SCI exhibited lower skin temperature in the anterior leg during exercise than Non-SCI (p < 0.001). During recovery, SCI athletes experienced a lower skin temperature restoration in the anterior arm, posterior arm and anterior leg (p < 0.05). The anterior leg is an interesting region to measure during exercise in people with SCI for assessing the physiological effect of the injury, probably for the autonomic dysfunction in skin temperature regulation, but the effect observed during recovery in the arms suggests the presence of different mechanisms involved in skin temperature regulation.</p></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"125 \",\"pages\":\"Article 103969\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001876/pdfft?md5=0248fada9bb150aebb32c1c4ea16661e&pid=1-s2.0-S0306456524001876-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001876\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001876","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Effect of spinal cord injury on the skin temperature of different regions of interest during a graded exercise test in a moderate temperature environment
The gradient between core and skin temperature is a relevant factor in heat exchange between the human body and the environment, but people with spinal cord injury (SCI), due to their autonomic dysfunction, have impaired mechanisms that condition skin temperature response. This study aimed to determine how SCI affects skin temperature response in different ROIs during a graded exercise test in a moderate temperature environment. 32 participants were included in the study [SCI (N = 16); Non-SCI (N = 16)]. A graded exercise test was conducted on an arm crank ergometer, with a staged duration of 3 min separated by 1 min of rest. Skin temperature was measured using infrared thermography at rest, after each interval and during recovery. Individuals with SCI exhibited lower skin temperature in the anterior leg during exercise than Non-SCI (p < 0.001). During recovery, SCI athletes experienced a lower skin temperature restoration in the anterior arm, posterior arm and anterior leg (p < 0.05). The anterior leg is an interesting region to measure during exercise in people with SCI for assessing the physiological effect of the injury, probably for the autonomic dysfunction in skin temperature regulation, but the effect observed during recovery in the arms suggests the presence of different mechanisms involved in skin temperature regulation.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles