利用片断仿射障碍函数估算片断仿射动力系统的不变集

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Pouya Samanipour, Hasan Poonawala
{"title":"利用片断仿射障碍函数估算片断仿射动力系统的不变集","authors":"Pouya Samanipour,&nbsp;Hasan Poonawala","doi":"10.1016/j.ejcon.2024.101115","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces an algorithm for estimating the invariant set of closed-loop controlled dynamical systems identified using single-hidden layer Rectified linear units (ReLU) neural networks or piecewise affine (<span><math><mi>PWA</mi></math></span>) functions, particularly addressing the challenge of providing safety guarantees for single-hidden layer ReLU networks commonly used in safety–critical applications. The invariant set of <span><math><mi>PWA</mi></math></span> dynamical system is estimated using single-hidden layer ReLU networks or its equivalent <span><math><mi>PWA</mi></math></span> function. This method entails formulating the barrier function as a <span><math><mi>PWA</mi></math></span> function and converting the search process into a linear optimization problem using vertices. We incorporate a domain refinement strategy to increase flexibility in case the optimization does not find a valid barrier function. Moreover, the objective of the optimization is to find a less conservative invariant set based on the current partition. Our experimental results demonstrate the effectiveness and efficiency of our approach, demonstrating its potential for ensuring the safety of <span><math><mi>PWA</mi></math></span> dynamical systems.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101115"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant set estimation for piecewise affine dynamical systems using piecewise affine barrier function\",\"authors\":\"Pouya Samanipour,&nbsp;Hasan Poonawala\",\"doi\":\"10.1016/j.ejcon.2024.101115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces an algorithm for estimating the invariant set of closed-loop controlled dynamical systems identified using single-hidden layer Rectified linear units (ReLU) neural networks or piecewise affine (<span><math><mi>PWA</mi></math></span>) functions, particularly addressing the challenge of providing safety guarantees for single-hidden layer ReLU networks commonly used in safety–critical applications. The invariant set of <span><math><mi>PWA</mi></math></span> dynamical system is estimated using single-hidden layer ReLU networks or its equivalent <span><math><mi>PWA</mi></math></span> function. This method entails formulating the barrier function as a <span><math><mi>PWA</mi></math></span> function and converting the search process into a linear optimization problem using vertices. We incorporate a domain refinement strategy to increase flexibility in case the optimization does not find a valid barrier function. Moreover, the objective of the optimization is to find a less conservative invariant set based on the current partition. Our experimental results demonstrate the effectiveness and efficiency of our approach, demonstrating its potential for ensuring the safety of <span><math><mi>PWA</mi></math></span> dynamical systems.</p></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101115\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001754\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001754","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用单隐层整型线性单元(ReLU)神经网络或片断仿射(PWA)函数估算闭环控制动力系统不变量集的算法,特别是解决了为安全关键型应用中常用的单隐层 ReLU 网络提供安全保证的难题。利用单隐层 ReLU 网络或等效的 PWA 函数估算 PWA 动力系统的不变集。这种方法需要将障碍函数表述为 PWA 函数,并使用顶点将搜索过程转换为线性优化问题。我们采用了一种领域细化策略,以提高优化的灵活性,以防找不到有效的障碍函数。此外,优化的目标是在当前分区的基础上找到一个不那么保守的不变集。我们的实验结果证明了我们方法的有效性和效率,证明了其在确保 PWA 动态系统安全方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant set estimation for piecewise affine dynamical systems using piecewise affine barrier function

This paper introduces an algorithm for estimating the invariant set of closed-loop controlled dynamical systems identified using single-hidden layer Rectified linear units (ReLU) neural networks or piecewise affine (PWA) functions, particularly addressing the challenge of providing safety guarantees for single-hidden layer ReLU networks commonly used in safety–critical applications. The invariant set of PWA dynamical system is estimated using single-hidden layer ReLU networks or its equivalent PWA function. This method entails formulating the barrier function as a PWA function and converting the search process into a linear optimization problem using vertices. We incorporate a domain refinement strategy to increase flexibility in case the optimization does not find a valid barrier function. Moreover, the objective of the optimization is to find a less conservative invariant set based on the current partition. Our experimental results demonstrate the effectiveness and efficiency of our approach, demonstrating its potential for ensuring the safety of PWA dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信