论路径和循环的非重复着色

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Fábio Botler , Wanderson Lomenha , João Pedro de Souza
{"title":"论路径和循环的非重复着色","authors":"Fábio Botler ,&nbsp;Wanderson Lomenha ,&nbsp;João Pedro de Souza","doi":"10.1016/j.dam.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>We say that a sequence <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub></mrow></math></span> of integers is <em>repetitive</em> if <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span>. A <em>walk</em> in a graph <span><math><mi>G</mi></math></span> is a sequence <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> of vertices of <span><math><mi>G</mi></math></span> in which <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. Given a <span><math><mi>k</mi></math></span>-coloring <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, we say that <span><math><mi>c</mi></math></span> is <em>walk-nonrepetitive</em> (resp. <em>stroll-nonrepetitive</em>) if for every <span><math><mrow><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and every walk <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub></mrow></math></span> the sequence <span><math><mrow><mi>c</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⋯</mo><mi>c</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is not repetitive unless <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span> (resp. unless <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for some <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span>). The <em>walk</em> (resp. <em>stroll</em>) <em>chromatic number</em> <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>) of <span><math><mi>G</mi></math></span> is the minimum <span><math><mi>k</mi></math></span> for which <span><math><mi>G</mi></math></span> has a walk-nonrepetitive (resp. stroll-nonrepetitive) <span><math><mi>k</mi></math></span>-coloring. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denote, respectively, the cycle and the path with <span><math><mi>n</mi></math></span> vertices. In this paper we present three results that answer questions posed by Barát and Wood in 2008: (i) <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span> whenever <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>∉</mo><mrow><mo>{</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></mrow></mrow></math></span>; (ii) <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span> if <span><math><mrow><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>21</mn></mrow></math></span> and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span> otherwise; and (iii) <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span>, whenever <span><math><mrow><mi>n</mi><mo>∉</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span> otherwise. In particular, (ii) improves bounds on <span><math><mi>n</mi></math></span> obtained by Ochem in 2021 and Tao in 2023.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 221-228"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonrepetitive colorings of paths and cycles\",\"authors\":\"Fábio Botler ,&nbsp;Wanderson Lomenha ,&nbsp;João Pedro de Souza\",\"doi\":\"10.1016/j.dam.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We say that a sequence <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub></mrow></math></span> of integers is <em>repetitive</em> if <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span>. A <em>walk</em> in a graph <span><math><mi>G</mi></math></span> is a sequence <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> of vertices of <span><math><mi>G</mi></math></span> in which <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. Given a <span><math><mi>k</mi></math></span>-coloring <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, we say that <span><math><mi>c</mi></math></span> is <em>walk-nonrepetitive</em> (resp. <em>stroll-nonrepetitive</em>) if for every <span><math><mrow><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and every walk <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub></mrow></math></span> the sequence <span><math><mrow><mi>c</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⋯</mo><mi>c</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is not repetitive unless <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span> (resp. unless <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for some <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span>). The <em>walk</em> (resp. <em>stroll</em>) <em>chromatic number</em> <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>) of <span><math><mi>G</mi></math></span> is the minimum <span><math><mi>k</mi></math></span> for which <span><math><mi>G</mi></math></span> has a walk-nonrepetitive (resp. stroll-nonrepetitive) <span><math><mi>k</mi></math></span>-coloring. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denote, respectively, the cycle and the path with <span><math><mi>n</mi></math></span> vertices. In this paper we present three results that answer questions posed by Barát and Wood in 2008: (i) <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span> whenever <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>∉</mo><mrow><mo>{</mo><mn>5</mn><mo>,</mo><mn>7</mn><mo>}</mo></mrow></mrow></math></span>; (ii) <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span> if <span><math><mrow><mn>3</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>21</mn></mrow></math></span> and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span> otherwise; and (iii) <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mrow></math></span>, whenever <span><math><mrow><mi>n</mi><mo>∉</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mrow></math></span> otherwise. In particular, (ii) improves bounds on <span><math><mi>n</mi></math></span> obtained by Ochem in 2021 and Tao in 2023.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 221-228\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003767\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003767","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果每 i∈{1,...,t},ai=ai+t,我们就说整数序列 a1⋯a2t 是重复的。图 G 中的行走是 G 的顶点序列 v1⋯vr,其中每 i∈{1,...,r-1},vivi+1∈E(G)。给定 V(G) 的 k 个着色 c:V(G)→{1,...,k} ,如果 c 是漫步非重复的(resp.对于每个 t∈N 和每个行走 v1⋯v2t 序列 c(v1)⋯c(v2t)都不重复,除非对于每个 i∈{1,...,t},vi=vi+t(或者,除非对于某些 i∈{1,...,t},vi=vi+t)。G 的漫步(或漫步)色度数 σ(G)(或 ρ(G))是 G 具有漫步非重复(或漫步非重复)k 着色的最小 k。让 Cn 和 Pn 分别表示有 n 个顶点的循环和路径。本文提出了三个结果,回答了 Barát 和 Wood 在 2008 年提出的问题:(i) 只要 n≥4 且 n∉{5,7},σ(Cn)=4;(ii) 如果 3≤n≤21 ρ(Pn)=3,否则 ρ(Pn)=4;(iii) 只要 n∉{3,4,6,8},ρ(Cn)=4,否则 ρ(Cn)=3。特别是,(ii) 改进了 Ochem 和 Tao 分别于 2021 年和 2023 年得到的 n 定界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nonrepetitive colorings of paths and cycles

We say that a sequence a1a2t of integers is repetitive if ai=ai+t for every i{1,,t}. A walk in a graph G is a sequence v1vr of vertices of G in which vivi+1E(G) for every i{1,,r1}. Given a k-coloring c:V(G){1,,k} of V(G), we say that c is walk-nonrepetitive (resp. stroll-nonrepetitive) if for every tN and every walk v1v2t the sequence c(v1)c(v2t) is not repetitive unless vi=vi+t for every i{1,,t} (resp. unless vi=vi+t for some i{1,,t}). The walk (resp. stroll) chromatic number σ(G) (resp. ρ(G)) of G is the minimum k for which G has a walk-nonrepetitive (resp. stroll-nonrepetitive) k-coloring. Let Cn and Pn denote, respectively, the cycle and the path with n vertices. In this paper we present three results that answer questions posed by Barát and Wood in 2008: (i) σ(Cn)=4 whenever n4 and n{5,7}; (ii) ρ(Pn)=3 if 3n21 and ρ(Pn)=4 otherwise; and (iii) ρ(Cn)=4, whenever n{3,4,6,8}, and ρ(Cn)=3 otherwise. In particular, (ii) improves bounds on n obtained by Ochem in 2021 and Tao in 2023.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信