阿尔伯塔冰雹巷冰雹、风和降雨复合极端事件的多元分析

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Issam Mohamed , Mohammad Reza Najafi , Paul Joe , Julian Brimelow
{"title":"阿尔伯塔冰雹巷冰雹、风和降雨复合极端事件的多元分析","authors":"Issam Mohamed ,&nbsp;Mohammad Reza Najafi ,&nbsp;Paul Joe ,&nbsp;Julian Brimelow","doi":"10.1016/j.wace.2024.100718","DOIUrl":null,"url":null,"abstract":"<div><p>Hailstorms are severe weather events with the potential for devastating impacts. The consequences can be significantly worsened when hail events are accompanied by strong winds, intensifying both hail momentum and damage to property sidings and windows. Additionally, rainfall extremes during hailstorms can disrupt the drainage systems, potentially leading to flash flooding. Therefore, understanding the inter-dependencies and joint behaviour of these hazards is crucial for developing effective risk mitigation strategies. In this study, we conduct a multivariate probabilistic assessment of concurrent hail, wind, and rainfall extremes over the Alberta's “hail alley” using radar and ground-based observations. The analysis comprehensively explores individual hazards, as well as bivariate and trivariate scenarios using a vine copula approach. We quantify individual, conditional, and joint return periods (JRPs) for the various scenarios. Findings indicate that in both wind-driven hail and hail-rainfall extreme hazards, the joint occurrences based on JRP, can be underestimated by 20% and 70% when assuming independence, respectively, which has substantial implications for risk assessment and management, as well as infrastructure design and maintenance. The analysis of the trivariate case suggests the potential for the concurrent occurrence of multiple hazards in the region. Furthermore, results show that Archimedean copula families outperform elliptical copulas in simulating extreme variables related to compound events associated with hailstorms. The study stresses the importance of assessing the joint behaviour of these hazard components in hailstorms, with the objective of mitigating potential impacts on vulnerable regions.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000793/pdfft?md5=7c963bc76010c213e0a583feccef85ca&pid=1-s2.0-S2212094724000793-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multivariate analysis of compound hail, wind and rainfall extremes in Alberta's hail alley\",\"authors\":\"Issam Mohamed ,&nbsp;Mohammad Reza Najafi ,&nbsp;Paul Joe ,&nbsp;Julian Brimelow\",\"doi\":\"10.1016/j.wace.2024.100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hailstorms are severe weather events with the potential for devastating impacts. The consequences can be significantly worsened when hail events are accompanied by strong winds, intensifying both hail momentum and damage to property sidings and windows. Additionally, rainfall extremes during hailstorms can disrupt the drainage systems, potentially leading to flash flooding. Therefore, understanding the inter-dependencies and joint behaviour of these hazards is crucial for developing effective risk mitigation strategies. In this study, we conduct a multivariate probabilistic assessment of concurrent hail, wind, and rainfall extremes over the Alberta's “hail alley” using radar and ground-based observations. The analysis comprehensively explores individual hazards, as well as bivariate and trivariate scenarios using a vine copula approach. We quantify individual, conditional, and joint return periods (JRPs) for the various scenarios. Findings indicate that in both wind-driven hail and hail-rainfall extreme hazards, the joint occurrences based on JRP, can be underestimated by 20% and 70% when assuming independence, respectively, which has substantial implications for risk assessment and management, as well as infrastructure design and maintenance. The analysis of the trivariate case suggests the potential for the concurrent occurrence of multiple hazards in the region. Furthermore, results show that Archimedean copula families outperform elliptical copulas in simulating extreme variables related to compound events associated with hailstorms. The study stresses the importance of assessing the joint behaviour of these hazard components in hailstorms, with the objective of mitigating potential impacts on vulnerable regions.</p></div>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000793/pdfft?md5=7c963bc76010c213e0a583feccef85ca&pid=1-s2.0-S2212094724000793-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000793\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000793","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

冰雹是一种可能造成毁灭性影响的恶劣天气事件。如果冰雹事件伴有强风,冰雹的威力和对房屋外墙和窗户的损坏都会加剧,后果会更加严重。此外,冰雹期间的极端降雨会破坏排水系统,可能导致山洪暴发。因此,了解这些灾害的相互依存关系和共同行为对于制定有效的风险缓解策略至关重要。在本研究中,我们利用雷达和地面观测数据,对阿尔伯塔省 "冰雹巷 "上同时出现的冰雹、风和极端降雨进行了多元概率评估。该分析采用藤状共轭方法全面探讨了单个危害以及二元和三元情景。我们对各种情况下的单个、条件和联合重现期(JRPs)进行了量化。研究结果表明,在风致冰雹和冰雹-降雨极端灾害中,基于联合回归期的联合发生率在假设独立的情况下可分别低估 20% 和 70%,这对风险评估和管理以及基础设施设计和维护具有重大影响。对三变量情况的分析表明,该地区有可能同时发生多种灾害。此外,结果表明,在模拟与冰雹相关的复合事件有关的极端变量方面,阿基米德共轭系数族优于椭圆共轭系数。这项研究强调了评估冰雹中这些灾害成分的共同行为的重要性,目的是减轻对脆弱地区的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate analysis of compound hail, wind and rainfall extremes in Alberta's hail alley

Hailstorms are severe weather events with the potential for devastating impacts. The consequences can be significantly worsened when hail events are accompanied by strong winds, intensifying both hail momentum and damage to property sidings and windows. Additionally, rainfall extremes during hailstorms can disrupt the drainage systems, potentially leading to flash flooding. Therefore, understanding the inter-dependencies and joint behaviour of these hazards is crucial for developing effective risk mitigation strategies. In this study, we conduct a multivariate probabilistic assessment of concurrent hail, wind, and rainfall extremes over the Alberta's “hail alley” using radar and ground-based observations. The analysis comprehensively explores individual hazards, as well as bivariate and trivariate scenarios using a vine copula approach. We quantify individual, conditional, and joint return periods (JRPs) for the various scenarios. Findings indicate that in both wind-driven hail and hail-rainfall extreme hazards, the joint occurrences based on JRP, can be underestimated by 20% and 70% when assuming independence, respectively, which has substantial implications for risk assessment and management, as well as infrastructure design and maintenance. The analysis of the trivariate case suggests the potential for the concurrent occurrence of multiple hazards in the region. Furthermore, results show that Archimedean copula families outperform elliptical copulas in simulating extreme variables related to compound events associated with hailstorms. The study stresses the importance of assessing the joint behaviour of these hazard components in hailstorms, with the objective of mitigating potential impacts on vulnerable regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信