解决振荡电路中出现的分数李纳方程的两种高精度、高效率数值方法

Q1 Mathematics
Mohamed El-Gamel, Yasser Kashwaa, Mahmoud Abd El-Hady
{"title":"解决振荡电路中出现的分数李纳方程的两种高精度、高效率数值方法","authors":"Mohamed El-Gamel,&nbsp;Yasser Kashwaa,&nbsp;Mahmoud Abd El-Hady","doi":"10.1016/j.padiff.2024.100914","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the fractional model of the Liénard and Duffing equations with the Liouville-Caputo fractional derivative. These equations grow with the evolution of radio and vacuum tube technology, which describe oscillating circuits and generalize the spring–mass device equation. We compare two numerical approaches, namely Jacobi and Haar wavelet collocation methods. The given approaches are used to discretize and transform the equation into a system of algebraic equations, and the Broyden-Quasi Newton algorithm is applied to solve the resulting nonlinear system of equations. A complete error analysis and convergence rates for different grid sizes are derived for both methods, which are used to compare the accuracy and efficiency of the two approaches. While both approaches produce correct solutions, according to the numerical findings, the Jacobi collocation method is more efficient and accurate than the Haar wavelet collocation method.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100914"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124003000/pdfft?md5=165c20557c3d7b0654d0c1300a174b52&pid=1-s2.0-S2666818124003000-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Two highly accurate and efficient numerical methods for solving the fractional Liénard’s equation arising in oscillating circuits\",\"authors\":\"Mohamed El-Gamel,&nbsp;Yasser Kashwaa,&nbsp;Mahmoud Abd El-Hady\",\"doi\":\"10.1016/j.padiff.2024.100914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the fractional model of the Liénard and Duffing equations with the Liouville-Caputo fractional derivative. These equations grow with the evolution of radio and vacuum tube technology, which describe oscillating circuits and generalize the spring–mass device equation. We compare two numerical approaches, namely Jacobi and Haar wavelet collocation methods. The given approaches are used to discretize and transform the equation into a system of algebraic equations, and the Broyden-Quasi Newton algorithm is applied to solve the resulting nonlinear system of equations. A complete error analysis and convergence rates for different grid sizes are derived for both methods, which are used to compare the accuracy and efficiency of the two approaches. While both approaches produce correct solutions, according to the numerical findings, the Jacobi collocation method is more efficient and accurate than the Haar wavelet collocation method.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003000/pdfft?md5=165c20557c3d7b0654d0c1300a174b52&pid=1-s2.0-S2666818124003000-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了带有 Liouville-Caputo 分数导数的 Liénard 和 Duffing 方程的分数模型。这些方程是随着无线电和真空管技术的发展而发展起来的,它们描述了振荡电路并概括了弹簧-质量器件方程。我们比较了两种数值方法,即 Jacobi 和 Haar 小波配位法。我们使用这两种方法将方程离散化并转化为代数方程系统,然后使用布洛伊登-准牛顿算法求解由此产生的非线性方程系统。两种方法都得出了完整的误差分析和不同网格大小的收敛率,用于比较两种方法的精度和效率。虽然两种方法都能得出正确的解,但根据数值结果,雅可比配位法比哈小波配位法更有效、更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two highly accurate and efficient numerical methods for solving the fractional Liénard’s equation arising in oscillating circuits

In this paper, we investigate the fractional model of the Liénard and Duffing equations with the Liouville-Caputo fractional derivative. These equations grow with the evolution of radio and vacuum tube technology, which describe oscillating circuits and generalize the spring–mass device equation. We compare two numerical approaches, namely Jacobi and Haar wavelet collocation methods. The given approaches are used to discretize and transform the equation into a system of algebraic equations, and the Broyden-Quasi Newton algorithm is applied to solve the resulting nonlinear system of equations. A complete error analysis and convergence rates for different grid sizes are derived for both methods, which are used to compare the accuracy and efficiency of the two approaches. While both approaches produce correct solutions, according to the numerical findings, the Jacobi collocation method is more efficient and accurate than the Haar wavelet collocation method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信