论与格尔方-迪基层次结构相关的三线方程和四线方程

Q1 Mathematics
P.H. van der Kamp , F.W. Nijhoff , D.I. McLaren , G.R.W. Quispel
{"title":"论与格尔方-迪基层次结构相关的三线方程和四线方程","authors":"P.H. van der Kamp ,&nbsp;F.W. Nijhoff ,&nbsp;D.I. McLaren ,&nbsp;G.R.W. Quispel","doi":"10.1016/j.padiff.2024.100913","DOIUrl":null,"url":null,"abstract":"<div><p>Introduced in Zhang et al. (2012), the trilinear Boussinesq equation is the natural form of the equation for the <span><math><mi>τ</mi></math></span>-function of the lattice Boussinesq system. In this paper we study various aspects of this equation: its highly nontrivial derivation from the bilinear lattice AKP equation under dimensional reduction, a quadrilinear dual lattice equation, conservation laws, and periodic reductions leading to higher-dimensional integrable maps and their Laurent property. Furthermore, we consider a higher Gel’fand–Dikii lattice system, its periodic reductions and Laurent property. As a special application, from both a trilinear Boussinesq recurrence as well as a higher Gel’fand–Dikii system of three bilinear recurrences, we establish Somos-like integer sequences.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100913"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124002997/pdfft?md5=c112e5a820d962cd897377c0327ec253&pid=1-s2.0-S2666818124002997-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On trilinear and quadrilinear equations associated with the lattice Gel’fand–Dikii hierarchy\",\"authors\":\"P.H. van der Kamp ,&nbsp;F.W. Nijhoff ,&nbsp;D.I. McLaren ,&nbsp;G.R.W. Quispel\",\"doi\":\"10.1016/j.padiff.2024.100913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Introduced in Zhang et al. (2012), the trilinear Boussinesq equation is the natural form of the equation for the <span><math><mi>τ</mi></math></span>-function of the lattice Boussinesq system. In this paper we study various aspects of this equation: its highly nontrivial derivation from the bilinear lattice AKP equation under dimensional reduction, a quadrilinear dual lattice equation, conservation laws, and periodic reductions leading to higher-dimensional integrable maps and their Laurent property. Furthermore, we consider a higher Gel’fand–Dikii lattice system, its periodic reductions and Laurent property. As a special application, from both a trilinear Boussinesq recurrence as well as a higher Gel’fand–Dikii system of three bilinear recurrences, we establish Somos-like integer sequences.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100913\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002997/pdfft?md5=c112e5a820d962cd897377c0327ec253&pid=1-s2.0-S2666818124002997-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124002997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

三线性布辛斯方程是格网布辛斯方程组的 τ 函数的自然形式。在本文中,我们研究了该方程的各个方面:在降维条件下从双线性晶格 AKP 方程衍生出的高度非线性方程、四线性对偶晶格方程、守恒定律、导致高维可积分映射的周期性降维及其劳伦特性质。此外,我们还考虑了更高的 Gel'fand-Dikii 格系、其周期性还原和劳伦特性质。作为一种特殊的应用,我们从三线性布辛斯基递推以及由三个双线性递推组成的更高的 Gel'fand-Dikii 系统中,建立了类似索莫斯的整数序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On trilinear and quadrilinear equations associated with the lattice Gel’fand–Dikii hierarchy

Introduced in Zhang et al. (2012), the trilinear Boussinesq equation is the natural form of the equation for the τ-function of the lattice Boussinesq system. In this paper we study various aspects of this equation: its highly nontrivial derivation from the bilinear lattice AKP equation under dimensional reduction, a quadrilinear dual lattice equation, conservation laws, and periodic reductions leading to higher-dimensional integrable maps and their Laurent property. Furthermore, we consider a higher Gel’fand–Dikii lattice system, its periodic reductions and Laurent property. As a special application, from both a trilinear Boussinesq recurrence as well as a higher Gel’fand–Dikii system of three bilinear recurrences, we establish Somos-like integer sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信