一个非线性和非局部积分微分方程的有限体积近似值

Q1 Mathematics
Jaouad El Kasmy, Anas Rachid, Mohamed Laaraj
{"title":"一个非线性和非局部积分微分方程的有限体积近似值","authors":"Jaouad El Kasmy,&nbsp;Anas Rachid,&nbsp;Mohamed Laaraj","doi":"10.1016/j.padiff.2024.100910","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the error analysis of the Petrov–Galerkin finite volume element method (FVEM) is investigated for a nonlinear parabolic integro-differential equation that arises in the mathematical modeling of the penetration of a magnetic field into a substance, accounting for temperature-dependent changes in electrical conductivity. Starting from Maxwell’s equations, we derive a one-dimensional model problem, which forms the basis of our analysis. Our main goal is to develop a general framework for obtaining finite volume element approximations and to study the error analysis. For simplicity, we consider only the lowest-order (linear and L-splines) finite volume elements. The novel contribution lies in the application of FVEM to this problem, leading to the establishment of an unconditionally stable numerical scheme and the derivation of optimal error estimates in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> norms for both semi-discrete and linearized backward Euler fully-discrete schemes, using a generalized projection method that carefully manages the nonlinear terms. Lastly, numerical experiments are provided to support the theoretical conclusions.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100910"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124002961/pdfft?md5=9e517d92e267b48febbb73207a2db312&pid=1-s2.0-S2666818124002961-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A finite volume approximations for one nonlinear and nonlocal integrodifferential equations\",\"authors\":\"Jaouad El Kasmy,&nbsp;Anas Rachid,&nbsp;Mohamed Laaraj\",\"doi\":\"10.1016/j.padiff.2024.100910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the error analysis of the Petrov–Galerkin finite volume element method (FVEM) is investigated for a nonlinear parabolic integro-differential equation that arises in the mathematical modeling of the penetration of a magnetic field into a substance, accounting for temperature-dependent changes in electrical conductivity. Starting from Maxwell’s equations, we derive a one-dimensional model problem, which forms the basis of our analysis. Our main goal is to develop a general framework for obtaining finite volume element approximations and to study the error analysis. For simplicity, we consider only the lowest-order (linear and L-splines) finite volume elements. The novel contribution lies in the application of FVEM to this problem, leading to the establishment of an unconditionally stable numerical scheme and the derivation of optimal error estimates in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> norms for both semi-discrete and linearized backward Euler fully-discrete schemes, using a generalized projection method that carefully manages the nonlinear terms. Lastly, numerical experiments are provided to support the theoretical conclusions.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100910\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002961/pdfft?md5=9e517d92e267b48febbb73207a2db312&pid=1-s2.0-S2666818124002961-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124002961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124002961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 Petrov-Galerkin 有限体积元素法(FVEM)对非线性抛物线积分微分方程的误差分析,该方程产生于磁场穿透物质的数学建模中,并考虑了电导率随温度的变化。我们从麦克斯韦方程出发,推导出一个一维模型问题,它构成了我们分析的基础。我们的主要目标是建立一个获取有限体积元近似值的通用框架,并研究误差分析。为简单起见,我们只考虑最低阶(线性和 L-样条)有限体积元。我们的新贡献在于将 FVEM 应用于这一问题,从而建立了无条件稳定的数值方案,并利用一种精心管理非线性项的广义投影方法,为半离散和线性化后向欧拉全离散方案推导出 L∞(L2(Ω))和 L2(H01(Ω)) 规范下的最佳误差估计。最后,还提供了数值实验来支持理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite volume approximations for one nonlinear and nonlocal integrodifferential equations

In this paper, the error analysis of the Petrov–Galerkin finite volume element method (FVEM) is investigated for a nonlinear parabolic integro-differential equation that arises in the mathematical modeling of the penetration of a magnetic field into a substance, accounting for temperature-dependent changes in electrical conductivity. Starting from Maxwell’s equations, we derive a one-dimensional model problem, which forms the basis of our analysis. Our main goal is to develop a general framework for obtaining finite volume element approximations and to study the error analysis. For simplicity, we consider only the lowest-order (linear and L-splines) finite volume elements. The novel contribution lies in the application of FVEM to this problem, leading to the establishment of an unconditionally stable numerical scheme and the derivation of optimal error estimates in the L(L2(Ω)) and L2(H01(Ω)) norms for both semi-discrete and linearized backward Euler fully-discrete schemes, using a generalized projection method that carefully manages the nonlinear terms. Lastly, numerical experiments are provided to support the theoretical conclusions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信