分数抛物型 PDE 的配位与有限差分法结合方法

Q1 Mathematics
Md. Shorif Hossan, Trishna Datta, Md. Shafiqul Islam
{"title":"分数抛物型 PDE 的配位与有限差分法结合方法","authors":"Md. Shorif Hossan,&nbsp;Trishna Datta,&nbsp;Md. Shafiqul Islam","doi":"10.1016/j.padiff.2024.100921","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to estimate the solutions of fractional-order partial differential equations of spacial fractional and both time-space fractional order. For this, we use finite differences for time derivatives and the well-known collocation method for space derivatives with lower-order Bernstein polynomials as basis functions. We explain the mathematical formulations in detail. Convergence and stability analysis of the space–time fractional diffusion equation with the source term is reported subsequently. Three numerical examples are considered for demonstrating the accuracy and reliability of the proposed method.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100921"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124003073/pdfft?md5=3b2187117d490f72d3ba56cedb6afc86&pid=1-s2.0-S2666818124003073-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining approach of collocation and finite difference methods for fractional parabolic PDEs\",\"authors\":\"Md. Shorif Hossan,&nbsp;Trishna Datta,&nbsp;Md. Shafiqul Islam\",\"doi\":\"10.1016/j.padiff.2024.100921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research aims to estimate the solutions of fractional-order partial differential equations of spacial fractional and both time-space fractional order. For this, we use finite differences for time derivatives and the well-known collocation method for space derivatives with lower-order Bernstein polynomials as basis functions. We explain the mathematical formulations in detail. Convergence and stability analysis of the space–time fractional diffusion equation with the source term is reported subsequently. Three numerical examples are considered for demonstrating the accuracy and reliability of the proposed method.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100921\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003073/pdfft?md5=3b2187117d490f72d3ba56cedb6afc86&pid=1-s2.0-S2666818124003073-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在估算空间分数阶和时空分数阶偏微分方程的解。为此,我们对时间导数采用有限差分法,对空间导数采用著名的搭配法,并以低阶伯恩斯坦多项式作为基函数。我们将详细解释数学公式。随后报告了带有源项的时空分数扩散方程的收敛性和稳定性分析。为了证明所提方法的准确性和可靠性,我们考虑了三个数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining approach of collocation and finite difference methods for fractional parabolic PDEs

This research aims to estimate the solutions of fractional-order partial differential equations of spacial fractional and both time-space fractional order. For this, we use finite differences for time derivatives and the well-known collocation method for space derivatives with lower-order Bernstein polynomials as basis functions. We explain the mathematical formulations in detail. Convergence and stability analysis of the space–time fractional diffusion equation with the source term is reported subsequently. Three numerical examples are considered for demonstrating the accuracy and reliability of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信