论带动态边界条件的准线性双双曲方程的局部存在解和吹胀解

Q1 Mathematics
Begüm Çalışkan Desova , Mustafa Polat
{"title":"论带动态边界条件的准线性双双曲方程的局部存在解和吹胀解","authors":"Begüm Çalışkan Desova ,&nbsp;Mustafa Polat","doi":"10.1016/j.padiff.2024.100925","DOIUrl":null,"url":null,"abstract":"<div><p>This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100925"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124003115/pdfft?md5=3c4c4813c18fef025bc6235fa0a2b167&pid=1-s2.0-S2666818124003115-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions\",\"authors\":\"Begüm Çalışkan Desova ,&nbsp;Mustafa Polat\",\"doi\":\"10.1016/j.padiff.2024.100925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100925\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003115/pdfft?md5=3c4c4813c18fef025bc6235fa0a2b167&pid=1-s2.0-S2666818124003115-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本论文旨在研究具有动态边界条件的准线性双双曲方程的局部解的存在性,并推导其炸毁结果。我们利用最大单调算子理论来证明解的局部好求性,并利用凹性方法来建立炸毁结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local existence and blow-up solutions to a quasi-linear bi-hyperbolic equation with dynamic boundary conditions

This note aims to study the existence of the local solutions and derive a blow-up result for a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. We use the maximal monotone operator theory to demonstrate the solution’s local well-posedness, and a concavity method to establish the blow-up result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信