Jianning Zhang , Jieli Ma , Yong Jiang , Yifan Zhang , Yiren Wang
{"title":"从第一性原理看纳米结构铁素体合金中的铁素体/透辉石界面和氦分区","authors":"Jianning Zhang , Jieli Ma , Yong Jiang , Yifan Zhang , Yiren Wang","doi":"10.1016/j.surfin.2024.105099","DOIUrl":null,"url":null,"abstract":"<div><p>Nano-oxides are largely responsible for the excellent mechanical properties and irradiation tolerance of nano-structured ferritic alloys (NFAs) for nuclear reactor applications. In this work, the roles of perovskite YTiO<sub>3</sub> and its interface in trapping helium in NFAs were investigated from the first-principles. Similarly as other two Y-Ti-oxide phases (Y<sub>2</sub>TiO<sub>5</sub> and Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>), bulk YTiO<sub>3</sub> can trap insoluble helium at its interstitial sites, but with a lower trapping ability that is only comparable to matrix vacancies. The ferrite/YTiO<sub>3</sub> interface phase diagram was constructed based on the experimental orientation relationship and the calculated interface formation energy, and the lowest-energy interface structure was predicted as the ns-Ti or the stoichiometric. Helium always prefers to consume individual interfacial vacancies and interstitial sites to the extent possible, before forming higher-order helium-vacancy clusters at the interface. Similarly as Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>, YTiO<sub>3</sub> preferably traps helium at its interface, followed by its bulk interior and the ferritic matrix. However, in view of all the bulk and interface results, perovskite YTiO<sub>3</sub> cannot compete with pyrochlore Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> in trapping helium in NFAs.</p></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"53 ","pages":"Article 105099"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ferrite/perovskite interface and helium partition in nano-structured ferritic alloys from the first-principles\",\"authors\":\"Jianning Zhang , Jieli Ma , Yong Jiang , Yifan Zhang , Yiren Wang\",\"doi\":\"10.1016/j.surfin.2024.105099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nano-oxides are largely responsible for the excellent mechanical properties and irradiation tolerance of nano-structured ferritic alloys (NFAs) for nuclear reactor applications. In this work, the roles of perovskite YTiO<sub>3</sub> and its interface in trapping helium in NFAs were investigated from the first-principles. Similarly as other two Y-Ti-oxide phases (Y<sub>2</sub>TiO<sub>5</sub> and Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>), bulk YTiO<sub>3</sub> can trap insoluble helium at its interstitial sites, but with a lower trapping ability that is only comparable to matrix vacancies. The ferrite/YTiO<sub>3</sub> interface phase diagram was constructed based on the experimental orientation relationship and the calculated interface formation energy, and the lowest-energy interface structure was predicted as the ns-Ti or the stoichiometric. Helium always prefers to consume individual interfacial vacancies and interstitial sites to the extent possible, before forming higher-order helium-vacancy clusters at the interface. Similarly as Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>, YTiO<sub>3</sub> preferably traps helium at its interface, followed by its bulk interior and the ferritic matrix. However, in view of all the bulk and interface results, perovskite YTiO<sub>3</sub> cannot compete with pyrochlore Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> in trapping helium in NFAs.</p></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"53 \",\"pages\":\"Article 105099\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012550\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The ferrite/perovskite interface and helium partition in nano-structured ferritic alloys from the first-principles
Nano-oxides are largely responsible for the excellent mechanical properties and irradiation tolerance of nano-structured ferritic alloys (NFAs) for nuclear reactor applications. In this work, the roles of perovskite YTiO3 and its interface in trapping helium in NFAs were investigated from the first-principles. Similarly as other two Y-Ti-oxide phases (Y2TiO5 and Y2Ti2O7), bulk YTiO3 can trap insoluble helium at its interstitial sites, but with a lower trapping ability that is only comparable to matrix vacancies. The ferrite/YTiO3 interface phase diagram was constructed based on the experimental orientation relationship and the calculated interface formation energy, and the lowest-energy interface structure was predicted as the ns-Ti or the stoichiometric. Helium always prefers to consume individual interfacial vacancies and interstitial sites to the extent possible, before forming higher-order helium-vacancy clusters at the interface. Similarly as Y2Ti2O7, YTiO3 preferably traps helium at its interface, followed by its bulk interior and the ferritic matrix. However, in view of all the bulk and interface results, perovskite YTiO3 cannot compete with pyrochlore Y2Ti2O7 in trapping helium in NFAs.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)