Okhyeon Kim , Yewon Kim , Hye-Lee Kim , Zhe Wu , Chang Yup Park , Dong-Ho Ahn , Bong Jin Kuh , Won-Jun Lee
{"title":"通过原子层沉积 GeTe 和 SbTe 超级循环生长 Ge2Sb2Te5 薄膜的机理","authors":"Okhyeon Kim , Yewon Kim , Hye-Lee Kim , Zhe Wu , Chang Yup Park , Dong-Ho Ahn , Bong Jin Kuh , Won-Jun Lee","doi":"10.1016/j.surfin.2024.105101","DOIUrl":null,"url":null,"abstract":"<div><p>The film with a composition close to Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> was fabricated by the supercycle atomic layer deposition (ALD) of GeTe and SbTe, followed by tellurization annealing. Supercycle processes are widely used for thin film deposition of multicomponent materials and often exhibit non-ideal growth behavior. Since only <em>in situ</em> analysis can reveal the substrate-dependent growth behavior, we used <em>in situ</em> quartz crystal microbalance (QCM) to study the growth mechanism during ALD supercycle processes at 85 °C. GeTe grown on SbTe was more Te-deficient than continuously grown GeTe film. As a result, more Te-deficient Ge-Sb-Te films were formed than expected. By annealing in a Te ambient at 250 °C, the Te-deficient Ge-Sb-Te film was converted to the Ge<sub>0.23</sub>Sb<sub>0.23</sub>Te<sub>0.54</sub> close to Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> film, which had a high density equivalent to 95 % of the FCC structure of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>. The film showed excellent conformality and uniform composition in a trench pattern, suggesting a uniform crystallization temperature of 118 °C at all locations.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth mechanism of Ge2Sb2Te5 thin films by atomic layer deposition supercycles of GeTe and SbTe\",\"authors\":\"Okhyeon Kim , Yewon Kim , Hye-Lee Kim , Zhe Wu , Chang Yup Park , Dong-Ho Ahn , Bong Jin Kuh , Won-Jun Lee\",\"doi\":\"10.1016/j.surfin.2024.105101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The film with a composition close to Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> was fabricated by the supercycle atomic layer deposition (ALD) of GeTe and SbTe, followed by tellurization annealing. Supercycle processes are widely used for thin film deposition of multicomponent materials and often exhibit non-ideal growth behavior. Since only <em>in situ</em> analysis can reveal the substrate-dependent growth behavior, we used <em>in situ</em> quartz crystal microbalance (QCM) to study the growth mechanism during ALD supercycle processes at 85 °C. GeTe grown on SbTe was more Te-deficient than continuously grown GeTe film. As a result, more Te-deficient Ge-Sb-Te films were formed than expected. By annealing in a Te ambient at 250 °C, the Te-deficient Ge-Sb-Te film was converted to the Ge<sub>0.23</sub>Sb<sub>0.23</sub>Te<sub>0.54</sub> close to Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> film, which had a high density equivalent to 95 % of the FCC structure of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>. The film showed excellent conformality and uniform composition in a trench pattern, suggesting a uniform crystallization temperature of 118 °C at all locations.</p></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012574\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012574","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth mechanism of Ge2Sb2Te5 thin films by atomic layer deposition supercycles of GeTe and SbTe
The film with a composition close to Ge2Sb2Te5 was fabricated by the supercycle atomic layer deposition (ALD) of GeTe and SbTe, followed by tellurization annealing. Supercycle processes are widely used for thin film deposition of multicomponent materials and often exhibit non-ideal growth behavior. Since only in situ analysis can reveal the substrate-dependent growth behavior, we used in situ quartz crystal microbalance (QCM) to study the growth mechanism during ALD supercycle processes at 85 °C. GeTe grown on SbTe was more Te-deficient than continuously grown GeTe film. As a result, more Te-deficient Ge-Sb-Te films were formed than expected. By annealing in a Te ambient at 250 °C, the Te-deficient Ge-Sb-Te film was converted to the Ge0.23Sb0.23Te0.54 close to Ge2Sb2Te5 film, which had a high density equivalent to 95 % of the FCC structure of Ge2Sb2Te5. The film showed excellent conformality and uniform composition in a trench pattern, suggesting a uniform crystallization temperature of 118 °C at all locations.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.