三变压器神经网络在短期光伏功率预测中的应用:案例研究

Jiahao Wu , Yongkai Zhao , Ruihan Zhang , Xin Li , Yuxin Wu
{"title":"三变压器神经网络在短期光伏功率预测中的应用:案例研究","authors":"Jiahao Wu ,&nbsp;Yongkai Zhao ,&nbsp;Ruihan Zhang ,&nbsp;Xin Li ,&nbsp;Yuxin Wu","doi":"10.1016/j.solcom.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><p>In order to solve the potential safety hazards caused by the fluctuation of photovoltaic (PV) power generation, it is necessary to predict it in advance and take countermeasures as soon as possible. Based on the three models of vanilla Transformer, Informer, and Autoformer, this paper considers three prediction scenarios: zero-cost prediction, low-cost prediction, and high-cost prediction, and realizes the power prediction under two prediction horizons of 4 h and 24 h for a matrix of a centralized PV power station in Hubei Province, China. The results of some configurations meet the industry-recommended metric requirements, and the overall performance of the vanilla Transformer is better than Informer and Autoformer. After comparing the three models and different prediction intervals, and considering the practical industrial demand, this paper gives recommended configurations for both 4 h and 24 h predictions. The practical rolling prediction performance of the recommended configurations demonstrates the applicability and flexibility of the proposed methods.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"12 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000237/pdfft?md5=594e66ba68e3b10bd886384b21fc172f&pid=1-s2.0-S2772940024000237-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of three Transformer neural networks for short-term photovoltaic power prediction: A case study\",\"authors\":\"Jiahao Wu ,&nbsp;Yongkai Zhao ,&nbsp;Ruihan Zhang ,&nbsp;Xin Li ,&nbsp;Yuxin Wu\",\"doi\":\"10.1016/j.solcom.2024.100089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to solve the potential safety hazards caused by the fluctuation of photovoltaic (PV) power generation, it is necessary to predict it in advance and take countermeasures as soon as possible. Based on the three models of vanilla Transformer, Informer, and Autoformer, this paper considers three prediction scenarios: zero-cost prediction, low-cost prediction, and high-cost prediction, and realizes the power prediction under two prediction horizons of 4 h and 24 h for a matrix of a centralized PV power station in Hubei Province, China. The results of some configurations meet the industry-recommended metric requirements, and the overall performance of the vanilla Transformer is better than Informer and Autoformer. After comparing the three models and different prediction intervals, and considering the practical industrial demand, this paper gives recommended configurations for both 4 h and 24 h predictions. The practical rolling prediction performance of the recommended configurations demonstrates the applicability and flexibility of the proposed methods.</p></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"12 \",\"pages\":\"Article 100089\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772940024000237/pdfft?md5=594e66ba68e3b10bd886384b21fc172f&pid=1-s2.0-S2772940024000237-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772940024000237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940024000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为解决光伏发电波动带来的安全隐患,有必要提前预测并尽快采取应对措施。本文在香草变压器、告警器和自动变压器三种模型的基础上,考虑了零成本预测、低成本预测和高成本预测三种预测方案,以湖北省某集中式光伏电站矩阵为研究对象,实现了 4 h 和 24 h 两种预测视距下的功率预测。部分配置的结果达到了行业推荐的指标要求,香草变换器的整体性能优于 Informer 和 Autoformer。在比较了三种模型和不同预测间隔后,考虑到实际工业需求,本文给出了 4 小时和 24 小时预测的推荐配置。推荐配置的实际滚动预测性能证明了所提方法的适用性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of three Transformer neural networks for short-term photovoltaic power prediction: A case study

In order to solve the potential safety hazards caused by the fluctuation of photovoltaic (PV) power generation, it is necessary to predict it in advance and take countermeasures as soon as possible. Based on the three models of vanilla Transformer, Informer, and Autoformer, this paper considers three prediction scenarios: zero-cost prediction, low-cost prediction, and high-cost prediction, and realizes the power prediction under two prediction horizons of 4 h and 24 h for a matrix of a centralized PV power station in Hubei Province, China. The results of some configurations meet the industry-recommended metric requirements, and the overall performance of the vanilla Transformer is better than Informer and Autoformer. After comparing the three models and different prediction intervals, and considering the practical industrial demand, this paper gives recommended configurations for both 4 h and 24 h predictions. The practical rolling prediction performance of the recommended configurations demonstrates the applicability and flexibility of the proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信