Ikechukwu Martin Ogbu , Chien-Hua Tu , Eli Fastow , Zachary R. Hinton , Karen I. Winey , Marisa C. Kozlowski
{"title":"N2O 解构聚环辛烯生成羰基功能化大单体","authors":"Ikechukwu Martin Ogbu , Chien-Hua Tu , Eli Fastow , Zachary R. Hinton , Karen I. Winey , Marisa C. Kozlowski","doi":"10.1016/j.polymdegradstab.2024.110987","DOIUrl":null,"url":null,"abstract":"<div><p>Deconstruction of polyolefins into functionalized macromonomers presents a compelling strategy for polyolefin upcycling by creating macromonomers through dehydrogenation/depolymerization. We show that nitrous oxide (N<sub>2</sub>O), a greenhouse gas waste product from the production of nylon, mediates the deconstruction of polycyclooctene (PCOE) and generates carbonyl-functionalized macromonomers. Carbonyl incorporation and macromonomer molar mass were well controlled by reaction time, and subsequent hydrogenation readily removed residual carbon-carbon double bonds. We also demonstrated that the reaction could progress efficiently with substrates of moderate levels of unsaturation, closely mimicking partially dehydrogenated polyethylene. Such carbonyl-functionalized macromonomers could serve as feedstock for preparing vitrimers and other functional polymers.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110987"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N2O deconstruction of polycyclooctene to generate carbonyl-functionalized macromonomers\",\"authors\":\"Ikechukwu Martin Ogbu , Chien-Hua Tu , Eli Fastow , Zachary R. Hinton , Karen I. Winey , Marisa C. Kozlowski\",\"doi\":\"10.1016/j.polymdegradstab.2024.110987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deconstruction of polyolefins into functionalized macromonomers presents a compelling strategy for polyolefin upcycling by creating macromonomers through dehydrogenation/depolymerization. We show that nitrous oxide (N<sub>2</sub>O), a greenhouse gas waste product from the production of nylon, mediates the deconstruction of polycyclooctene (PCOE) and generates carbonyl-functionalized macromonomers. Carbonyl incorporation and macromonomer molar mass were well controlled by reaction time, and subsequent hydrogenation readily removed residual carbon-carbon double bonds. We also demonstrated that the reaction could progress efficiently with substrates of moderate levels of unsaturation, closely mimicking partially dehydrogenated polyethylene. Such carbonyl-functionalized macromonomers could serve as feedstock for preparing vitrimers and other functional polymers.</p></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"229 \",\"pages\":\"Article 110987\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003318\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003318","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
N2O deconstruction of polycyclooctene to generate carbonyl-functionalized macromonomers
Deconstruction of polyolefins into functionalized macromonomers presents a compelling strategy for polyolefin upcycling by creating macromonomers through dehydrogenation/depolymerization. We show that nitrous oxide (N2O), a greenhouse gas waste product from the production of nylon, mediates the deconstruction of polycyclooctene (PCOE) and generates carbonyl-functionalized macromonomers. Carbonyl incorporation and macromonomer molar mass were well controlled by reaction time, and subsequent hydrogenation readily removed residual carbon-carbon double bonds. We also demonstrated that the reaction could progress efficiently with substrates of moderate levels of unsaturation, closely mimicking partially dehydrogenated polyethylene. Such carbonyl-functionalized macromonomers could serve as feedstock for preparing vitrimers and other functional polymers.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.