具有支持统一结构的经典参数的距离规则图:情况 q ≥ 2

IF 0.7 3区 数学 Q2 MATHEMATICS
Blas Fernández , Roghayeh Maleki , Štefko Miklavič , Giusy Monzillo
{"title":"具有支持统一结构的经典参数的距离规则图:情况 q ≥ 2","authors":"Blas Fernández ,&nbsp;Roghayeh Maleki ,&nbsp;Štefko Miklavič ,&nbsp;Giusy Monzillo","doi":"10.1016/j.disc.2024.114263","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>Γ</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> denote a finite, simple, connected, and undirected non-bipartite graph with vertex set <em>X</em> and edge set <span><math><mi>R</mi></math></span>. Fix a vertex <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>, and define <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mi>y</mi><mi>z</mi><mo>|</mo><mo>∂</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>∂</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo>)</mo><mo>}</mo></math></span>, where ∂ denotes the path-length distance in Γ. Observe that the graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>)</mo></math></span> is bipartite. We say that Γ supports a uniform structure with respect to <em>x</em> whenever <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> has a uniform structure with respect to <em>x</em> in the sense of Miklavič and Terwilliger <span><span>[7]</span></span>.</p><p>Assume that Γ is a distance-regular graph with classical parameters <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> and diameter <span><math><mi>D</mi><mo>≥</mo><mn>4</mn></math></span>. Recall that <em>q</em> is an integer such that <span><math><mi>q</mi><mo>∉</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>}</mo></math></span>. The purpose of this paper is to study when Γ supports a uniform structure with respect to <em>x</em>. We studied the case <span><math><mi>q</mi><mo>≤</mo><mn>1</mn></math></span> in <span><span>[3]</span></span>, and so in this paper we assume <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>. Let <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the Terwilliger algebra of Γ with respect to <em>x</em>. Under an additional assumption that every irreducible <em>T</em>-module with endpoint 1 is thin, we show that if Γ supports a uniform structure with respect to <em>x</em>, then either <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> or <span><math><mi>α</mi><mo>=</mo><mi>q</mi></math></span>, <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>D</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>D</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>6</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114263"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003947/pdfft?md5=1365ed5c25a5773efbf51cb8def0b01e&pid=1-s2.0-S0012365X24003947-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Distance-regular graphs with classical parameters that support a uniform structure: Case q ≥ 2\",\"authors\":\"Blas Fernández ,&nbsp;Roghayeh Maleki ,&nbsp;Štefko Miklavič ,&nbsp;Giusy Monzillo\",\"doi\":\"10.1016/j.disc.2024.114263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>Γ</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> denote a finite, simple, connected, and undirected non-bipartite graph with vertex set <em>X</em> and edge set <span><math><mi>R</mi></math></span>. Fix a vertex <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>, and define <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mi>y</mi><mi>z</mi><mo>|</mo><mo>∂</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>∂</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo>)</mo><mo>}</mo></math></span>, where ∂ denotes the path-length distance in Γ. Observe that the graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>)</mo></math></span> is bipartite. We say that Γ supports a uniform structure with respect to <em>x</em> whenever <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> has a uniform structure with respect to <em>x</em> in the sense of Miklavič and Terwilliger <span><span>[7]</span></span>.</p><p>Assume that Γ is a distance-regular graph with classical parameters <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> and diameter <span><math><mi>D</mi><mo>≥</mo><mn>4</mn></math></span>. Recall that <em>q</em> is an integer such that <span><math><mi>q</mi><mo>∉</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>}</mo></math></span>. The purpose of this paper is to study when Γ supports a uniform structure with respect to <em>x</em>. We studied the case <span><math><mi>q</mi><mo>≤</mo><mn>1</mn></math></span> in <span><span>[3]</span></span>, and so in this paper we assume <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>. Let <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> denote the Terwilliger algebra of Γ with respect to <em>x</em>. Under an additional assumption that every irreducible <em>T</em>-module with endpoint 1 is thin, we show that if Γ supports a uniform structure with respect to <em>x</em>, then either <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> or <span><math><mi>α</mi><mo>=</mo><mi>q</mi></math></span>, <span><math><mi>β</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>D</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>D</mi><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>6</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114263\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003947/pdfft?md5=1365ed5c25a5773efbf51cb8def0b01e&pid=1-s2.0-S0012365X24003947-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003947\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003947","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让Γ=(X,R) 表示具有顶点集 X 和边集 R 的有限、简单、连通和不定向的非双向图。固定一个顶点 x∈X,定义 Rf=R∖{yz|∂(x,y)=∂(x,z)},其中∂表示Γ中的路径长度距离。请注意,图 Γf=(X,Rf) 是双向的。假设 Γ 是一个距离规则图,其经典参数为 (D,q,α,β),直径为 D≥4。回顾一下,q 是一个整数,使得 q∉{-1,0}。我们在 [3] 中研究过 q≤1 的情况,因此本文假设 q≥2 。让 T=T(x) 表示 Γ 关于 x 的泰尔维利格代数。在每个端点为 1 的不可还原 T 模块都是薄的这一额外假设下,我们证明了如果 Γ 支持关于 x 的均匀结构,那么要么 α=0 要么 α=q,β=q2(qD-1)/(q-1),D≡0(mod6)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance-regular graphs with classical parameters that support a uniform structure: Case q ≥ 2

Let Γ=(X,R) denote a finite, simple, connected, and undirected non-bipartite graph with vertex set X and edge set R. Fix a vertex xX, and define Rf=R{yz|(x,y)=(x,z)}, where ∂ denotes the path-length distance in Γ. Observe that the graph Γf=(X,Rf) is bipartite. We say that Γ supports a uniform structure with respect to x whenever Γf has a uniform structure with respect to x in the sense of Miklavič and Terwilliger [7].

Assume that Γ is a distance-regular graph with classical parameters (D,q,α,β) and diameter D4. Recall that q is an integer such that q{1,0}. The purpose of this paper is to study when Γ supports a uniform structure with respect to x. We studied the case q1 in [3], and so in this paper we assume q2. Let T=T(x) denote the Terwilliger algebra of Γ with respect to x. Under an additional assumption that every irreducible T-module with endpoint 1 is thin, we show that if Γ supports a uniform structure with respect to x, then either α=0 or α=q, β=q2(qD1)/(q1), and D0(mod6).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信