{"title":"欧米茄-3 脂肪酸可减轻紫外线-B 辐射对皮肤的伤害","authors":"","doi":"10.1016/j.plefa.2024.102641","DOIUrl":null,"url":null,"abstract":"<div><p>Mice fed a diet containing an adequate amount of ω-3 fatty acids (ω-3 Adq) or a deficient diet (ω-3 Def) were irradiated with ultraviolet-B (UV-B) and were measured daily changes in transepidermal water loss (TEWL). TEWL was significantly increased in ω-3 Def mice with repeated UV-B irradiation, but this increase was significantly reduced in ω-3 Adq mice. The epidermal layers revealed thickening of the spinous and basal layers induced by UV-B irradiation in both groups. Moreover, the ω-3 Def mice had a disturbed epidermal structure and a coarser stratum corneum. And the granule cell layer is significantly reduced, and abnormal layer formation (parakeratosis) occurred in the stratum corneum. These results suggest that continuous UV-B irradiation promotes epidermal turnover and leads to epidermal thickening, but ω-3 fatty acids protect the body from UV-B-induced stress.</p></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0952327824000358/pdfft?md5=c3429b485f7e0c2196629fd7f048d66d&pid=1-s2.0-S0952327824000358-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Omega-3 fatty acids mitigate skin damage caused by ultraviolet-B radiation\",\"authors\":\"\",\"doi\":\"10.1016/j.plefa.2024.102641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mice fed a diet containing an adequate amount of ω-3 fatty acids (ω-3 Adq) or a deficient diet (ω-3 Def) were irradiated with ultraviolet-B (UV-B) and were measured daily changes in transepidermal water loss (TEWL). TEWL was significantly increased in ω-3 Def mice with repeated UV-B irradiation, but this increase was significantly reduced in ω-3 Adq mice. The epidermal layers revealed thickening of the spinous and basal layers induced by UV-B irradiation in both groups. Moreover, the ω-3 Def mice had a disturbed epidermal structure and a coarser stratum corneum. And the granule cell layer is significantly reduced, and abnormal layer formation (parakeratosis) occurred in the stratum corneum. These results suggest that continuous UV-B irradiation promotes epidermal turnover and leads to epidermal thickening, but ω-3 fatty acids protect the body from UV-B-induced stress.</p></div>\",\"PeriodicalId\":94179,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0952327824000358/pdfft?md5=c3429b485f7e0c2196629fd7f048d66d&pid=1-s2.0-S0952327824000358-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952327824000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952327824000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Omega-3 fatty acids mitigate skin damage caused by ultraviolet-B radiation
Mice fed a diet containing an adequate amount of ω-3 fatty acids (ω-3 Adq) or a deficient diet (ω-3 Def) were irradiated with ultraviolet-B (UV-B) and were measured daily changes in transepidermal water loss (TEWL). TEWL was significantly increased in ω-3 Def mice with repeated UV-B irradiation, but this increase was significantly reduced in ω-3 Adq mice. The epidermal layers revealed thickening of the spinous and basal layers induced by UV-B irradiation in both groups. Moreover, the ω-3 Def mice had a disturbed epidermal structure and a coarser stratum corneum. And the granule cell layer is significantly reduced, and abnormal layer formation (parakeratosis) occurred in the stratum corneum. These results suggest that continuous UV-B irradiation promotes epidermal turnover and leads to epidermal thickening, but ω-3 fatty acids protect the body from UV-B-induced stress.