Thomas Jebb Sturges*, Markus Nyman, Sebastian Kalt, Kauri Pälsi, Panu Hilden, Martin Wegener, Carsten Rockstuhl and Andriy Shevchenko*,
{"title":"反向设计的三维激光纳米打印相位掩膜可扩展成像系统的景深","authors":"Thomas Jebb Sturges*, Markus Nyman, Sebastian Kalt, Kauri Pälsi, Panu Hilden, Martin Wegener, Carsten Rockstuhl and Andriy Shevchenko*, ","doi":"10.1021/acsphotonics.4c0095310.1021/acsphotonics.4c00953","DOIUrl":null,"url":null,"abstract":"<p >In optical imaging, achieving high resolution often comes at the expense of a shallow depth of field. This means that when using a standard microscope, any minor movement of the object along the optical axis can cause the image to become blurry. To address this issue, we exploit inverse design techniques to optimize a phase mask which, when inserted into a standard microscope, extends the depth of field by a factor of approximately four without compromising the microscope’s resolution. Differentiable Fourier optics simulations allow us to rapidly iterate toward an optimized design in a hybrid fashion, starting with gradient-free Bayesian optimization and proceeding to a local gradient-based optimization. To fabricate the device, a commercial two-photon 3D laser nanoprinter is used, in combination with a two-step precompensation routine, providing high fabrication speed and much better than subwavelength accuracy. We find excellent agreement between our numerical predictions and the measurements upon integrating the phase mask into a microscope and optically characterizing selected samples. The phase mask enables us to conduct simultaneous multiplane imaging of objects separated by distances that cannot be achieved with the original microscope.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"11 9","pages":"3765–3773 3765–3773"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse-Designed 3D Laser Nanoprinted Phase Masks to Extend the Depth of Field of Imaging Systems\",\"authors\":\"Thomas Jebb Sturges*, Markus Nyman, Sebastian Kalt, Kauri Pälsi, Panu Hilden, Martin Wegener, Carsten Rockstuhl and Andriy Shevchenko*, \",\"doi\":\"10.1021/acsphotonics.4c0095310.1021/acsphotonics.4c00953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In optical imaging, achieving high resolution often comes at the expense of a shallow depth of field. This means that when using a standard microscope, any minor movement of the object along the optical axis can cause the image to become blurry. To address this issue, we exploit inverse design techniques to optimize a phase mask which, when inserted into a standard microscope, extends the depth of field by a factor of approximately four without compromising the microscope’s resolution. Differentiable Fourier optics simulations allow us to rapidly iterate toward an optimized design in a hybrid fashion, starting with gradient-free Bayesian optimization and proceeding to a local gradient-based optimization. To fabricate the device, a commercial two-photon 3D laser nanoprinter is used, in combination with a two-step precompensation routine, providing high fabrication speed and much better than subwavelength accuracy. We find excellent agreement between our numerical predictions and the measurements upon integrating the phase mask into a microscope and optically characterizing selected samples. The phase mask enables us to conduct simultaneous multiplane imaging of objects separated by distances that cannot be achieved with the original microscope.</p>\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"11 9\",\"pages\":\"3765–3773 3765–3773\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphotonics.4c00953\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c00953","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Inverse-Designed 3D Laser Nanoprinted Phase Masks to Extend the Depth of Field of Imaging Systems
In optical imaging, achieving high resolution often comes at the expense of a shallow depth of field. This means that when using a standard microscope, any minor movement of the object along the optical axis can cause the image to become blurry. To address this issue, we exploit inverse design techniques to optimize a phase mask which, when inserted into a standard microscope, extends the depth of field by a factor of approximately four without compromising the microscope’s resolution. Differentiable Fourier optics simulations allow us to rapidly iterate toward an optimized design in a hybrid fashion, starting with gradient-free Bayesian optimization and proceeding to a local gradient-based optimization. To fabricate the device, a commercial two-photon 3D laser nanoprinter is used, in combination with a two-step precompensation routine, providing high fabrication speed and much better than subwavelength accuracy. We find excellent agreement between our numerical predictions and the measurements upon integrating the phase mask into a microscope and optically characterizing selected samples. The phase mask enables us to conduct simultaneous multiplane imaging of objects separated by distances that cannot be achieved with the original microscope.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.