通过 Ag-Co3O4 表面间的 SMSI 调节银在 HCHO 电催化氧化中的性能

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-09-18 DOI:10.1002/smll.202405358
Peiyuan Mao, Bingbing Chen, Rui Huang, Yang Jing, Long Xiao, Baihao Zhang, Chuan Shi
{"title":"通过 Ag-Co3O4 表面间的 SMSI 调节银在 HCHO 电催化氧化中的性能","authors":"Peiyuan Mao, Bingbing Chen, Rui Huang, Yang Jing, Long Xiao, Baihao Zhang, Chuan Shi","doi":"10.1002/smll.202405358","DOIUrl":null,"url":null,"abstract":"The replacement of oxygen evolution reactions with organic molecule oxidation reactions to enable energy-efficient hydrogen production has been a subject of interest. However, further reducing reaction energy consumption and releasing hydrogen from organic molecules continue to pose significant challenges. Herein, a strategy is proposed to produce hydrogen and formic acid from formaldehyde using Ag/Co<sub>3</sub>O<sub>4</sub> interface catalysts at the anode. The key to improving the performance of Ag-based catalysts for formaldehyde oxidation lies in the strong SMSI achieved through the well-designed “spontaneous redox reaction” between Ag and Co<sub>3</sub>O<sub>4</sub> precursors. Nano-sized Ag particles are uniformly dispersed on Co<sub>3</sub>O<sub>4</sub> nanosheets, and electron-deficient Ag<sup>δ+</sup> are formed by the SMSI between Ag and Co<sub>3</sub>O<sub>4.</sub> Ag/Co<sub>3</sub>O<sub>4</sub> demonstrates exceptional formaldehyde oxidation activity at low potentials of 0.32 V versus RHE and 0.65 V versus RHE, achieving current densities of 10 and 100 mA cm<sup>−2</sup>, respectively. The electrolyzer “Ag/Co<sub>3</sub>O<sub>4</sub>||20% Pt/C” achieves over 195% hydrogen efficiency and over 98% formic acid selectivity, maintaining stable operation for 60 hours. This work not only presents a novel approach to precisely modulate Ag particle size and interface electronic structure via SMSI, but also provides a promising approach to efficient and energy-saving hydrogen production and the transformation of harmful formaldehyde.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Silver Performance in Electrocatalytic Oxidation of HCHO via SMSI between Ag-Co3O4 Interfaces\",\"authors\":\"Peiyuan Mao, Bingbing Chen, Rui Huang, Yang Jing, Long Xiao, Baihao Zhang, Chuan Shi\",\"doi\":\"10.1002/smll.202405358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The replacement of oxygen evolution reactions with organic molecule oxidation reactions to enable energy-efficient hydrogen production has been a subject of interest. However, further reducing reaction energy consumption and releasing hydrogen from organic molecules continue to pose significant challenges. Herein, a strategy is proposed to produce hydrogen and formic acid from formaldehyde using Ag/Co<sub>3</sub>O<sub>4</sub> interface catalysts at the anode. The key to improving the performance of Ag-based catalysts for formaldehyde oxidation lies in the strong SMSI achieved through the well-designed “spontaneous redox reaction” between Ag and Co<sub>3</sub>O<sub>4</sub> precursors. Nano-sized Ag particles are uniformly dispersed on Co<sub>3</sub>O<sub>4</sub> nanosheets, and electron-deficient Ag<sup>δ+</sup> are formed by the SMSI between Ag and Co<sub>3</sub>O<sub>4.</sub> Ag/Co<sub>3</sub>O<sub>4</sub> demonstrates exceptional formaldehyde oxidation activity at low potentials of 0.32 V versus RHE and 0.65 V versus RHE, achieving current densities of 10 and 100 mA cm<sup>−2</sup>, respectively. The electrolyzer “Ag/Co<sub>3</sub>O<sub>4</sub>||20% Pt/C” achieves over 195% hydrogen efficiency and over 98% formic acid selectivity, maintaining stable operation for 60 hours. This work not only presents a novel approach to precisely modulate Ag particle size and interface electronic structure via SMSI, but also provides a promising approach to efficient and energy-saving hydrogen production and the transformation of harmful formaldehyde.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202405358\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405358","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用有机分子氧化反应取代氧进化反应,从而实现高能效制氢一直是人们感兴趣的话题。然而,进一步降低反应能耗和从有机分子中释放氢气仍然是一项重大挑战。本文提出了一种在阳极使用 Ag/Co3O4 界面催化剂从甲醛制取氢气和甲酸的策略。提高银基催化剂甲醛氧化性能的关键在于通过精心设计的银与 Co3O4 前驱体之间的 "自发氧化还原反应 "实现强 SMSI。纳米尺寸的 Ag 粒子均匀地分散在 Co3O4 纳米片上,Ag 和 Co3O4 之间的 SMSI 形成了缺电子的 Agδ+。Ag/Co3O4 在 0.32 V(相对于 RHE)和 0.65 V(相对于 RHE)的低电位下表现出卓越的甲醛氧化活性,电流密度分别达到 10 mA 和 100 mA cm-2。Ag/Co3O4||20% Pt/C "电解槽的制氢效率超过 195%,甲酸选择性超过 98%,并能保持稳定运行 60 小时。这项工作不仅提出了一种通过 SMSI 精确调节 Ag 粒子尺寸和界面电子结构的新方法,而且为高效节能制氢和转化有害甲醛提供了一种前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating Silver Performance in Electrocatalytic Oxidation of HCHO via SMSI between Ag-Co3O4 Interfaces
The replacement of oxygen evolution reactions with organic molecule oxidation reactions to enable energy-efficient hydrogen production has been a subject of interest. However, further reducing reaction energy consumption and releasing hydrogen from organic molecules continue to pose significant challenges. Herein, a strategy is proposed to produce hydrogen and formic acid from formaldehyde using Ag/Co3O4 interface catalysts at the anode. The key to improving the performance of Ag-based catalysts for formaldehyde oxidation lies in the strong SMSI achieved through the well-designed “spontaneous redox reaction” between Ag and Co3O4 precursors. Nano-sized Ag particles are uniformly dispersed on Co3O4 nanosheets, and electron-deficient Agδ+ are formed by the SMSI between Ag and Co3O4. Ag/Co3O4 demonstrates exceptional formaldehyde oxidation activity at low potentials of 0.32 V versus RHE and 0.65 V versus RHE, achieving current densities of 10 and 100 mA cm−2, respectively. The electrolyzer “Ag/Co3O4||20% Pt/C” achieves over 195% hydrogen efficiency and over 98% formic acid selectivity, maintaining stable operation for 60 hours. This work not only presents a novel approach to precisely modulate Ag particle size and interface electronic structure via SMSI, but also provides a promising approach to efficient and energy-saving hydrogen production and the transformation of harmful formaldehyde.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信