Adam Stewart, Ying Zhu, Yiting Liu, David A. Simpson, Peter J. Reece
{"title":"光镊组装纳米金刚石量子传感器","authors":"Adam Stewart, Ying Zhu, Yiting Liu, David A. Simpson, Peter J. Reece","doi":"10.1021/acs.nanolett.4c03195","DOIUrl":null,"url":null,"abstract":"Here we show that gradient force optical tweezers can be used to mediate the self-assembly of nanodiamonds into superstructures, which can serve as optically trapped nanoscale quantum probes with superior magnetic resonance sensing capabilities. Enhanced fluorescence rates from nitrogen-vacancy NV<sup>–</sup> defect centers enable rapid acquisition of optically detected magnetic resonance (ODMR), and shape-induced forces can improve both positioning accuracy and orientation control. The use of confocal imaging can isolate the signal from individual nanodiamonds within the assembly, thereby retaining the desirable properties of a single crystal probe. The improvements afforded by the use nanodiamond assemblies has the potential to resolve dynamic changes through, for example, real-time monitoring of the ODMR contrast.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Tweezers Assembled Nanodiamond Quantum Sensors\",\"authors\":\"Adam Stewart, Ying Zhu, Yiting Liu, David A. Simpson, Peter J. Reece\",\"doi\":\"10.1021/acs.nanolett.4c03195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we show that gradient force optical tweezers can be used to mediate the self-assembly of nanodiamonds into superstructures, which can serve as optically trapped nanoscale quantum probes with superior magnetic resonance sensing capabilities. Enhanced fluorescence rates from nitrogen-vacancy NV<sup>–</sup> defect centers enable rapid acquisition of optically detected magnetic resonance (ODMR), and shape-induced forces can improve both positioning accuracy and orientation control. The use of confocal imaging can isolate the signal from individual nanodiamonds within the assembly, thereby retaining the desirable properties of a single crystal probe. The improvements afforded by the use nanodiamond assemblies has the potential to resolve dynamic changes through, for example, real-time monitoring of the ODMR contrast.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03195\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03195","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Here we show that gradient force optical tweezers can be used to mediate the self-assembly of nanodiamonds into superstructures, which can serve as optically trapped nanoscale quantum probes with superior magnetic resonance sensing capabilities. Enhanced fluorescence rates from nitrogen-vacancy NV– defect centers enable rapid acquisition of optically detected magnetic resonance (ODMR), and shape-induced forces can improve both positioning accuracy and orientation control. The use of confocal imaging can isolate the signal from individual nanodiamonds within the assembly, thereby retaining the desirable properties of a single crystal probe. The improvements afforded by the use nanodiamond assemblies has the potential to resolve dynamic changes through, for example, real-time monitoring of the ODMR contrast.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.