An Lao, Shiqi Zhang, Xuhui Huang, Dunfeng Feng, Yujie Xiong, Zunqing Du, Zheng Zheng, Hanqi Wu
{"title":"评估微藻类对环境共存微塑料的生理反应:元分析","authors":"An Lao, Shiqi Zhang, Xuhui Huang, Dunfeng Feng, Yujie Xiong, Zunqing Du, Zheng Zheng, Hanqi Wu","doi":"10.1016/j.jhazmat.2024.135890","DOIUrl":null,"url":null,"abstract":"<p>Microplastics (MPs) are abundantly present in aquatic environments, where the phytoplankton—microalgae, are now inevitably bound to a long-term coexistence with them. While numerous studies have focused on the toxicological effects of high-concentration MPs exposure, there remains controversy over whether and how MPs affect microalgae at environmentally relevant concentrations. This study aims to draw conclusions that narrow the gap from 52 studies with varying results. Overall, MPs can inhibit growth and photosynthesis, induce oxidative damage, from which microalgae can recover after an appropriate period. Cyanobacteria exhibit greater vulnerability than chlorophyta. The relative size of MPs to algal cells potentially governs their coexistence behavior, thereby altering the mechanisms of impact. Pristine MPs may increase the production of extracellular polymeric substances (EPS) and microcystins (MCs), while aged MPs have the opposite effect. Additionally, relevant factors are systematically discussed, offering insights for future research.</p>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Physiological Responses of Microalgae towards Environmentally Coexisting Microplastics: A Meta-Analysis\",\"authors\":\"An Lao, Shiqi Zhang, Xuhui Huang, Dunfeng Feng, Yujie Xiong, Zunqing Du, Zheng Zheng, Hanqi Wu\",\"doi\":\"10.1016/j.jhazmat.2024.135890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microplastics (MPs) are abundantly present in aquatic environments, where the phytoplankton—microalgae, are now inevitably bound to a long-term coexistence with them. While numerous studies have focused on the toxicological effects of high-concentration MPs exposure, there remains controversy over whether and how MPs affect microalgae at environmentally relevant concentrations. This study aims to draw conclusions that narrow the gap from 52 studies with varying results. Overall, MPs can inhibit growth and photosynthesis, induce oxidative damage, from which microalgae can recover after an appropriate period. Cyanobacteria exhibit greater vulnerability than chlorophyta. The relative size of MPs to algal cells potentially governs their coexistence behavior, thereby altering the mechanisms of impact. Pristine MPs may increase the production of extracellular polymeric substances (EPS) and microcystins (MCs), while aged MPs have the opposite effect. Additionally, relevant factors are systematically discussed, offering insights for future research.</p>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135890\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135890","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Evaluating Physiological Responses of Microalgae towards Environmentally Coexisting Microplastics: A Meta-Analysis
Microplastics (MPs) are abundantly present in aquatic environments, where the phytoplankton—microalgae, are now inevitably bound to a long-term coexistence with them. While numerous studies have focused on the toxicological effects of high-concentration MPs exposure, there remains controversy over whether and how MPs affect microalgae at environmentally relevant concentrations. This study aims to draw conclusions that narrow the gap from 52 studies with varying results. Overall, MPs can inhibit growth and photosynthesis, induce oxidative damage, from which microalgae can recover after an appropriate period. Cyanobacteria exhibit greater vulnerability than chlorophyta. The relative size of MPs to algal cells potentially governs their coexistence behavior, thereby altering the mechanisms of impact. Pristine MPs may increase the production of extracellular polymeric substances (EPS) and microcystins (MCs), while aged MPs have the opposite effect. Additionally, relevant factors are systematically discussed, offering insights for future research.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.