{"title":"多媒体和全生命周期监测揭示了氟化工工业园区附近小麦中 PFAS 的动态累积规律和被低估的叶面吸收量","authors":"Xin Chen, Dashan Xu, Yuehan Xiao, Mingjiang Zuo, Jian Zhou, Xiao Sun, Guoqiang Shan, Lingyan Zhu","doi":"10.1021/acs.est.4c03525","DOIUrl":null,"url":null,"abstract":"The escalating concern of perfluoroalkyl and polyfluoroalkyl substances (PFAS), particularly at contaminated sites, has prompted extensive investigations. In this study, samples of multimedia including air, rhizosphere soil, and tissues of wheat at various growing stages were collected near a mega fluorochemical industrial park in China. Perfluorooctanoic acid (PFOA) was predominant in both air and soil with a strong correlation, highlighting air deposition as an important source in the terrestrial system. PFAS concentrations in wheat decreased in the stem and ear but increased in the leaves as wheat matured. Specifically, perfluorobutanoic acid (PFBA) dominated in the aboveground tissues in the full-life-cycle, except that PFOA surpassed and became predominant in leaves during the filling and maturing stages, hinting at an airborne source. For all PFAS, both bioaccumulation factors and translocation factors (TFs) were inversely correlated with the carbon chain length during the full-life-cycle. The obtained TF values were considerably higher than those obtained from ambient sites reported previously, further suggesting an unneglectable foliar uptake from air, which was estimated to be 25% for PFOA. Moreover, spray irrigation remarkably enhanced the absorption of PFAS in wheat via foliar uptake relative to flood irrigation. The estimated daily intake of PFBA via wheat consumption and air inhalation was 0.50 μg/kg/day for local residents, at least one magnitude higher than the corresponding threshold, suggesting an alarmingly high exposure risk.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimedia and Full-Life-Cycle Monitoring Discloses the Dynamic Accumulation Rules of PFAS and Underestimated Foliar Uptake in Wheat near a Fluorochemical Industrial Park\",\"authors\":\"Xin Chen, Dashan Xu, Yuehan Xiao, Mingjiang Zuo, Jian Zhou, Xiao Sun, Guoqiang Shan, Lingyan Zhu\",\"doi\":\"10.1021/acs.est.4c03525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating concern of perfluoroalkyl and polyfluoroalkyl substances (PFAS), particularly at contaminated sites, has prompted extensive investigations. In this study, samples of multimedia including air, rhizosphere soil, and tissues of wheat at various growing stages were collected near a mega fluorochemical industrial park in China. Perfluorooctanoic acid (PFOA) was predominant in both air and soil with a strong correlation, highlighting air deposition as an important source in the terrestrial system. PFAS concentrations in wheat decreased in the stem and ear but increased in the leaves as wheat matured. Specifically, perfluorobutanoic acid (PFBA) dominated in the aboveground tissues in the full-life-cycle, except that PFOA surpassed and became predominant in leaves during the filling and maturing stages, hinting at an airborne source. For all PFAS, both bioaccumulation factors and translocation factors (TFs) were inversely correlated with the carbon chain length during the full-life-cycle. The obtained TF values were considerably higher than those obtained from ambient sites reported previously, further suggesting an unneglectable foliar uptake from air, which was estimated to be 25% for PFOA. Moreover, spray irrigation remarkably enhanced the absorption of PFAS in wheat via foliar uptake relative to flood irrigation. The estimated daily intake of PFBA via wheat consumption and air inhalation was 0.50 μg/kg/day for local residents, at least one magnitude higher than the corresponding threshold, suggesting an alarmingly high exposure risk.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c03525\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c03525","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Multimedia and Full-Life-Cycle Monitoring Discloses the Dynamic Accumulation Rules of PFAS and Underestimated Foliar Uptake in Wheat near a Fluorochemical Industrial Park
The escalating concern of perfluoroalkyl and polyfluoroalkyl substances (PFAS), particularly at contaminated sites, has prompted extensive investigations. In this study, samples of multimedia including air, rhizosphere soil, and tissues of wheat at various growing stages were collected near a mega fluorochemical industrial park in China. Perfluorooctanoic acid (PFOA) was predominant in both air and soil with a strong correlation, highlighting air deposition as an important source in the terrestrial system. PFAS concentrations in wheat decreased in the stem and ear but increased in the leaves as wheat matured. Specifically, perfluorobutanoic acid (PFBA) dominated in the aboveground tissues in the full-life-cycle, except that PFOA surpassed and became predominant in leaves during the filling and maturing stages, hinting at an airborne source. For all PFAS, both bioaccumulation factors and translocation factors (TFs) were inversely correlated with the carbon chain length during the full-life-cycle. The obtained TF values were considerably higher than those obtained from ambient sites reported previously, further suggesting an unneglectable foliar uptake from air, which was estimated to be 25% for PFOA. Moreover, spray irrigation remarkably enhanced the absorption of PFAS in wheat via foliar uptake relative to flood irrigation. The estimated daily intake of PFBA via wheat consumption and air inhalation was 0.50 μg/kg/day for local residents, at least one magnitude higher than the corresponding threshold, suggesting an alarmingly high exposure risk.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.