Lu Gao, Yan Bao, Peng Lei, Sike Yu, Xiaofeng Zhu, Chao Liu, Wenbo Zhang and Jianzhong Ma
{"title":"通过设计用于个人湿热管理的天然孔径梯度,设计一种单向透水性皮肤可穿戴材料","authors":"Lu Gao, Yan Bao, Peng Lei, Sike Yu, Xiaofeng Zhu, Chao Liu, Wenbo Zhang and Jianzhong Ma","doi":"10.1039/D4TA04261A","DOIUrl":null,"url":null,"abstract":"<p >Unidirectional water-transport wearable materials play a key role in enhancing human comfort by effectively removing excess sweat. However, making unidirectional water-transport wearable materials, other than textiles, remains a challenge. Hence, a novel unidirectional water-transport skin-derived wearable material (UWT-Skin) is skillfully engineered based on a natural pore-size gradient from animal skin. The hydrophilic polyurethane fibrous membrane and hydrophobic polyvinylidene-fluoride coating on both sides of the natural skin derived from animal skin together create a gradient in pore size from macro to sub-micron levels, as well as a hydrophobic-to-hydrophilic gradient across the UWT-Skin. Leveraging the unidirectional capillary force generated by this dual-gradient design, UWT-Skin demonstrates an excellent unidirectional water-transport capability (<em>R</em>) of 731%, independent of gravity and over a wide range of sweat pH values. Gratifyingly, UWT-Skin promotes sweat removal, weakens sticky adhesion, and prevents excessive cooling (maintaining ∼2.0 °C higher than cotton and common N-Skin), thereby providing enhanced personal wet–thermal comfort in hot or humid environments. Additionally, it exhibits outstanding water vapor permeability (3943.5 g (m<small><sup>2</sup></small> 24 h)<small><sup>−1</sup></small>), air permeability (2659.1 mL (cm<small><sup>2</sup></small> h)<small><sup>−1</sup></small>), mechanical properties, softness and colorization, all of which ensure wearability. Overall, the successful development of this natural skin-derived wearables is valuable for evoking the enthusiasm for wearing them in sunny weather and inspires further innovation in natural fiber materials designed to provide personal wet–thermal comfort.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a unidirectional water-transport skin-derived wearable material through engineering a natural pore-size gradient for personal wet–thermal management†\",\"authors\":\"Lu Gao, Yan Bao, Peng Lei, Sike Yu, Xiaofeng Zhu, Chao Liu, Wenbo Zhang and Jianzhong Ma\",\"doi\":\"10.1039/D4TA04261A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Unidirectional water-transport wearable materials play a key role in enhancing human comfort by effectively removing excess sweat. However, making unidirectional water-transport wearable materials, other than textiles, remains a challenge. Hence, a novel unidirectional water-transport skin-derived wearable material (UWT-Skin) is skillfully engineered based on a natural pore-size gradient from animal skin. The hydrophilic polyurethane fibrous membrane and hydrophobic polyvinylidene-fluoride coating on both sides of the natural skin derived from animal skin together create a gradient in pore size from macro to sub-micron levels, as well as a hydrophobic-to-hydrophilic gradient across the UWT-Skin. Leveraging the unidirectional capillary force generated by this dual-gradient design, UWT-Skin demonstrates an excellent unidirectional water-transport capability (<em>R</em>) of 731%, independent of gravity and over a wide range of sweat pH values. Gratifyingly, UWT-Skin promotes sweat removal, weakens sticky adhesion, and prevents excessive cooling (maintaining ∼2.0 °C higher than cotton and common N-Skin), thereby providing enhanced personal wet–thermal comfort in hot or humid environments. Additionally, it exhibits outstanding water vapor permeability (3943.5 g (m<small><sup>2</sup></small> 24 h)<small><sup>−1</sup></small>), air permeability (2659.1 mL (cm<small><sup>2</sup></small> h)<small><sup>−1</sup></small>), mechanical properties, softness and colorization, all of which ensure wearability. Overall, the successful development of this natural skin-derived wearables is valuable for evoking the enthusiasm for wearing them in sunny weather and inspires further innovation in natural fiber materials designed to provide personal wet–thermal comfort.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04261a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04261a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design of a unidirectional water-transport skin-derived wearable material through engineering a natural pore-size gradient for personal wet–thermal management†
Unidirectional water-transport wearable materials play a key role in enhancing human comfort by effectively removing excess sweat. However, making unidirectional water-transport wearable materials, other than textiles, remains a challenge. Hence, a novel unidirectional water-transport skin-derived wearable material (UWT-Skin) is skillfully engineered based on a natural pore-size gradient from animal skin. The hydrophilic polyurethane fibrous membrane and hydrophobic polyvinylidene-fluoride coating on both sides of the natural skin derived from animal skin together create a gradient in pore size from macro to sub-micron levels, as well as a hydrophobic-to-hydrophilic gradient across the UWT-Skin. Leveraging the unidirectional capillary force generated by this dual-gradient design, UWT-Skin demonstrates an excellent unidirectional water-transport capability (R) of 731%, independent of gravity and over a wide range of sweat pH values. Gratifyingly, UWT-Skin promotes sweat removal, weakens sticky adhesion, and prevents excessive cooling (maintaining ∼2.0 °C higher than cotton and common N-Skin), thereby providing enhanced personal wet–thermal comfort in hot or humid environments. Additionally, it exhibits outstanding water vapor permeability (3943.5 g (m2 24 h)−1), air permeability (2659.1 mL (cm2 h)−1), mechanical properties, softness and colorization, all of which ensure wearability. Overall, the successful development of this natural skin-derived wearables is valuable for evoking the enthusiasm for wearing them in sunny weather and inspires further innovation in natural fiber materials designed to provide personal wet–thermal comfort.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.